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A B S T R A C T

Although recommender systems (RSs) play a crucial role in our society, previous studies have
revealed that the performance of RSs may considerably differ between groups of individuals
with different characteristics or from different demographics. In this case, a RS is considered to
be unfair when it does not perform equally well for different groups of users. Considering the
importance of RSs in the distribution and consumption of musical content worldwide, a careful
evaluation of fairness in the context of music RSs is crucial. To this end, we first introduce
LFM-2b, a novel large-scale real-world dataset of music listening records, comprising a subset to
investigate bias of RSs regarding users’ demographics. We then define a notion of fairness based
on the performance gap of a RS between the users with different demographics, and evaluate a
variety of collaborative filtering algorithms in terms of accuracy and beyond-accuracy metrics to
explore the fairness in the RS results toward a specific gender group. We observe the existence
of significant discrepancies (unfairness) between the performance of algorithms across male
and female user groups. Based on these discrepancies, we explore to what extent recommender
algorithms lead to intensifying the underlying population bias in the final results. We also study
the effect of a resampling strategy, commonly used as debiasing method , which yields slight
improvements in the fairness measures of various algorithms while maintaining their accuracy
and beyond-accuracy performance.

. Introduction

Recommender systems (RSs) play an indisputable role in our lives by taking part in a variety of day-to-day decisions, influencing
hich content we are exposed to on digital platforms. Such decisions include selecting a book to buy, a movie to watch, a hotel to
ook, or a song to listen to. While RSs, therefore, offer great support in accessing otherwise barely manageable amounts of data,
everal studies revealed that their performances may differ between groups of users depending on their characteristics (e.g., gender,
ace, ethnicity, age, country of origin, or personality Datta, Tschantz, & Datta, 2015; Lambrecht & Tucker, 2019; Melchiorre,
angerle, & Schedl, 2020; Schedl, Hauger, Farrahi and Tkalcic, 2015). Some of these performance disparities can disadvantage
ertain user groups in accessing opportunities, and therefore disregard the principle of fairness, namely the ‘‘absence of any prejudice
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or favoritism toward an individual or a group based on their intrinsic or acquired traits’’ (Mehrabi, Morstatter, Saxena, Lerman, &
Galstyan, 2019). In this article, we set out to study group fairness from the point of view of the users of RSs.

This form of unfairness in RSs can be traced back to biases resulting from the (interplay between) data, model/algorithm, and
sers (Chen, Dong, Wang, Feng, Wang, & He, 2020). Here, we focus on biases resulting from an imbalanced number of data points
egarding various demographics. These imbalances can be classified as population bias (Olteanu, Castillo, Diaz, & Kiciman, 2019),

which is part of a more general data bias (Baeza-Yates, 2018). In the presence of population bias, a machine learning model (such
s those created by a RS algorithm) captures the interaction patterns of the majority group more prominently, which can lead
o better model performance for the majority group in comparison to the one for the minority group (an unfair system) (Hardt,
rice, Price, & Srebro, 2016). We refer to the cause of this unfairness as model/algorithmic bias. Clearly, data is a major reason for

model bias, but different models still can lead to different degrees of unfairness or even intensify data bias. As shown in previous
studies in the contexts of text classification (De-Arteaga et al., 2019) and passage retrieval (Rekabsaz & Schedl, 2020), a machine
learning model may even compound the discrepancies in the collection, such that the distribution of the model’s results is even
more unfair in comparison with the existing discrepancies in the underlying data. This phenomena is referred to as compounding
imbalances (De-Arteaga et al., 2019; Hellman, 2018). In this case, the system is not only unfair toward minority groups but even
intensifies the existing imbalances.

1.1. Research questions

In the work at hand, we comprehensively study both population and model bias in the context of unfairness with regard to
gender in one important domain of RS research, music recommendation (Schedl, Knees, McFee, Bogdanov and Kaminskas, 2015).

oncretely, we explore the following research questions: RQ1: Do recommender algorithms of various categories yield different
performance scores (in terms of accuracy and beyond-accuracy metrics) for different user groups with respect to gender? If so, how
can these differences be characterized? RQ2: What is the effect of a resampling strategy, commonly used as debiasing method, on the
erformance and fairness of algorithms? RQ3: Do RS algorithms compound population bias? If so, how can this be characterized?

These questions can only be approached using a music recommendation dataset that contains gender information about users.
xisting (publicly available) datasets of this kind are exclusively composed of data from the music streaming platform Last.fm, and

include Last.fm 1K (Celma, 2010), LFM-1b (Schedl, 2016), and Music Listening Histories Dataset (MLHD) (Vigliensoni & Fujinaga,
2017). Most of them are either small (Celma, 2010) or do not contain up-to-date listening information (Schedl, 2016; Vigliensoni &
Fujinaga, 2017). Therefore, we introduce – as an additional contribution – the LFM-2b dataset, a novel up-to-date large-scale real-
world collection of music listening records, gathered from Last.fm, which considerably extends LFM-1b. Unlike existing datasets,
LFM-2b provides more than two billion listening records for more than 120,000 users who listened to more than 50 million unique
tracks in total. Another remarkable difference to LFM-1b is the large temporal coverage of listening records (2005–2020), which
allows to track users’ listening behavior over considerable periods of time. LFM-2b contains a dedicated subset, LFM-2b-DemoBias,
which we especially developed to study and evaluate fairness and biases in music RS in terms of users’ gender, age, and country of
origin. Because of these characteristics as well as a higher average number of listening records per user in comparison to LFM-1b
(Table 1, rows LFM-1b, LFM-2b, and LFM-2b/1b𝑑𝑖𝑓𝑓 ), LFM-2b-DemoBias is well-suited to approach the research questions under
investigation. All data is publicly available.

In approaching RQ1, we study gender-related unfairness on a variety of RS algorithms. Using LFM-2b-DemoBias, we train the
algorithms and compute evaluation metrics separately on the subsets of male and female users in the test set, using accuracy-based
(recall and NDCG) as well as beyond-accuracy metrics (diversity and coverage). We define unfairness of a RS algorithm regarding
an evaluation metric as the mean absolute differences of average evaluation scores across pairs of sensitive attributes (genders in
our experiments).1 This notion of fairness closely corresponds to the equality of opportunity metric of Hardt et al. (2016).

To address RQ2, we repeat the above-mentioned experiments by considering a debiasing method where – following Geyik,
Ambler, and Kenthapadi (2019) – data points of the minority group (female) in training data are resampled up to the number of
data points of the majority group (male).

To answer RQ3, we extend the concept of compounding imbalances, introduced by De-Arteaga et al. (2019) on the true-positive
metric, to any arbitrary metric and refer to it as compounding factor. The compounding factor regarding a model and an evaluation
metric is defined as the divergence of the distribution of the metric’s results over the users’ groups, from the population distribution
in the dataset. A higher compounding factor indicates that the model intensifies the existing bias in data, toward the majority group.

1 In the experiments, gender is considered as a binary construct due to practical constraints. In particular, in LFM-2b the users are either categorized to one
of these two genders, or their gender is not specified. We are however fully aware that a gender binary model is not representative of all individuals; yet,
working with in-the-wild data (as in our case) entails an unavoidable caveat, derived from the still predominant belief that human beings can be sorted into
two discrete categories (Hyde, Bigler, Joel, Tate, & van Anders, 2019). All introduced metrics, however, are defined for generic non-binary settings, and can be
2

applied to gender or any other sensitive attribute.
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1.2. Major contributions

The main contributions of the work at hand can be summarized as follows:

∙ We introduce a large-scale real-world dataset of music listening records that can be used to study fairness and bias of music
RSs.

∙ We point out, through the use of specific fairness measures, which are the recommender algorithms that more robustly handle
the gender bias existing in real-world data.

∙ We identify to what extent the recommender algorithms compound population bias, and how a data debiasing method
mitigates this issue.

1.3. Structure of the article

In the remainder of this article, we present related literature and datasets (Section 2), describe the LFM-2b and LFM-2b-DemoBias
atasets we created and released together with this article (Section 3). We then introduce and formulate our notion of fairness
nd compounding factor (Section 4). Subsequently, we outline the experiment setup by describing the data processing, presenting
he considered algorithms, and discussing the experiment procedures (Section 5). Finally, the outcomes of our investigation are
iscussed (Section 6), and the conclusions and limitations of the presented work, as well as the future research directions in the
tudy of demographic bias of music RSs, are presented (Section 7).

. Related work

Related literature can be categorized into RSs algorithms (Section 2.1), studies of bias, fairness, and debiasing in the context of
Ss (Section 2.2), and existing datasets for music recommendation (Section 2.3).

.1. Recommender system algorithms

RSs are systems that match users to items2 in order to maximize some metric (or a combination of metrics). In the case of
usic recommendation (Schedl, Knees et al., 2015), the users are typically people using some recommendation service and the

ecommended items are most commonly tracks/recordings or artists. The goal of such RSs is then to provide satisfying track or
rtist recommendations to the users. The underlying data leveraged by the RS algorithm usually include a user–item interaction
atrix, where a cell’s value indicates a user’s rating or playcount value (i.e., how often the user listened to the track), sometimes

omplemented by side information on the user (e.g., age or gender) or the item (e.g., audio features, editorial and user-generated
etadata such as genre, artist biographies, or tags contributed by the platform users, etc.), as well as contextual information

e.g., timestamp or location).
The most widely adopted strategies in RSs are collaborative filtering (CF) (Aggarwal, 2016b; Koren & Bell, 2015) and content-based

iltering (CBF) (Deldjoo, Schedl, Cremonesi, & Pasi, 2020; Lops, de Gemmis, & Semeraro, 2011), as well as combinations thereof
hybrid recommender systems) (Aggarwal, 2016a; Beliakov, Calvo, & James, 2011), sometimes incorporating contextual information
nto a context-aware recommender system (CARS) (Adomavicius, Mobasher, Ricci, & Tuzhilin, 2011).

Pure CF approaches only exploit historical data of user–item interactions to predict the level of preference of unknown items
or an active user, and recommend to them the items with the highest prediction scores (Aggarwal, 2016b; Koren & Bell, 2015). CF
ystems can further be categorized into memory-based and model-based. The former computes similarities between users (or items)
irectly on the high-dimensional vectors of the user–item interaction matrix to identify nearest neighbors (e.g., users whose music
aste is most similar to that of the active user); the latter learns a model from the user–item interactions, which is used to effect
redictions or recommendations. Often a latent factor model is used, which can be regarded as a low-dimensional embedding of
he user–item interaction space. This can be achieved, e.g., by matrix factorization. Similarities between users and items are then
omputed in this latent factor space rather than in the original space.

CBF systems, in contrast, leverage content descriptors of the items, the active user already interacted with to identify items
imilar to those preferred by the user (Deldjoo et al., 2020; Lops et al., 2011). In the music domain, such content descriptors may
nclude tempo, rhythm patterns, or genre information. In addition to content information, CBF systems therefore only require the
ctive user’s interaction data (but not those of other users) to make recommendations.

CARS leverage contextual information, such as time, location, or activity of the users, to build a recommendation model that
onsiders the current situation of the active user when effecting recommendations (Adomavicius et al., 2011). CARS most commonly
xtend CF or CBF approaches.

Hybrid RSs combine at least two individual approaches, using a fusion or aggregation method (Burke, 2002; Çano & Morisio,
017). Most recent deep learning-based approaches for music recommendation belong to this category and leverage co-listening
nformation (CF) as well as content features (CBF), e.g. Huang et al. (2020), Oramas, Nieto, Sordo, and Serra (2017) and van den
ord, Dieleman, and Schrauwen (2013).

2 We denote the recommended objects as ‘‘items’’ irrespective of the fact that some RSs recommend users to users, e.g., on online dating platforms.
3
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In the study at hand, we focus our investigation on CF algorithms for several reasons. First, they are more widely adopted than
BF. Second, they typically yield better performance than CBF systems, and are therefore used in (or as part of) almost all state-
f-the-art systems. Third, investigating hybrid systems instead would render it hard to disentangle unfairness aspects originating
rom the collaborative information from those originating from content information. Fourth, the output of CF systems is particularly
ensitive to data biases, as shown for instance in Melchiorre et al. (2020) for differences in interaction data resulting from different
ersonality traits of users, in Lambrecht and Tucker (2019) for gender-specific differences in job advertisements, in Bauer and
chedl (2019) for differences in terms of users’ inclination to listen to mainstream music, and in Abdollahpouri, Mansoury, Burke,
nd Mobasher (2019) and Kowald, Schedl, and Lex (2020) for differences resulting from varying item popularity in the music and
ovie domains.

.2. Investigating and alleviating bias in recommender systems

Fairness and bias in RSs have been the focus of numerous recent studies (Lin, Sonboli, Mobasher, & Burke, 2019a; Mansoury,
bdollahpouri, Pechenizkiy, Mobasher, & Burke, 2020a; Mansoury, Mobasher, Burke, & Pechenizkiy, 2019). The concept of fairness
equires systems not to discriminate against either a group (Pedreshi, Ruggieri, & Turini, 2008) or individuals (Dwork, Hardt, Pitassi,
eingold, & Zemel, 2012) in terms of recommendation quality.

ssessing bias and fairness. Various studies approach fairness in RSs from the points of view of different involved stakeholders,
amely RS users (Ekstrand et al., 2018), items/item providers (Beutel et al., 2019; Biega, Gummadi, & Weikum, 2018; Borges &
tefanidis, 2019), or all, known as multi-sided fairness (Burke, 2017; Patro, Biswas, Ganguly, Gummadi, & Chakraborty, 2020). The
ork at hand focuses on studying fairness and bias from the perspective of user groups, defined by common gender.

Fairness has been investigated in various domains. For instance, in job recommendation, studies have found that highly paid
jobs are more often recommended to men than to women, both on Facebook by Lambrecht and Tucker (2019) and on Google
by Datta et al. (2015). Lambrecht and Tucker identify as the reason the cost-minimizing strategy of advertising algorithms. More
precisely, platform owners charge for showing a job advertisement to users; and the cost is different for different demographic
target groups. Since young women belong to a particularly expensive group, well-paid ads that are meant to be gender-neutral
are, in fact, more frequently presented to male users by algorithms adopting a cost-minimizing strategy, because the latter group
is ‘‘less expensive’’. In the domain of books, Ekstrand, Tian, Imran, Mehrpouyan and Kluver (2018) investigate the disparity of
book authors’ gender distribution in the user profiles and in the recommendation lists. They find that particularly CF algorithms
often create recommendation results that are biased toward male authors. In the movie domain, Lin, Sonboli, Mobasher, and Burke
(2019b) study how different recommender system algorithms amplify or dampen preferences for specific item categories (e. g., Action
versus Romance) for male and female users. They show, for instance, that neighborhood-based models intensify the preferences,
for all users, toward the preferred item category of the dominant group (males), while some other algorithms, such as SVD++
and BiasedMF, dampen these preferences. Similarly, Mansoury, Abdollahpouri, Pechenizkiy, Mobasher, and Burke (2020b) assess
the amplification of popularity bias in recommender systems due to the feedback loop, i. e., recommending popular items makes
the popular items even more popular, showing that the bias amplification is stronger for the minority group (i. e., females). To
which extent different recommender system algorithms reflect the user group preferences for item categories in input has also been
investigated by Mansoury et al. (2019), who follow a similar approach to Lin et al. (2019b). In the music domain, which is also
the target domain of our study, bias in recommender systems (Ekstrand, Tian, Azpiazu et al., 2018; Melchiorre et al., 2020; Schedl,
Hauger et al., 2015; Shakespeare, Porcaro, Gómez, & Castillo, 2020) and gender representation in music streaming and broadcasting
services (Epps-Darling, Bouyer, & Cramer, 2020; Watson, 2020), have recently been investigated. In particular, Schedl, Hauger et al.
(2015) show that precision and recall obtained by simple CF and CARS algorithms substantially diverge for users of different gender,
age, and country. Melchiorre et al. (2020) show that state-of-the-art CF algorithms yield different performance scores (recall and
NDCG) for different user groups with respect to their personality traits, in particular for users with high versus low openness and
neuroticism. Ekstrand, Tian, Azpiazu et al. (2018) reveal performance disparities (with respect to the NDCG metric) of simple CF
algorithms in the music and movie domains, resulting in unfairness with regards to age and gender. They also find that biases do
not necessarily correlate with user group size.

Unfairness and bias caused by algorithms are studied in various related tasks to recommendation, indeed, fairness-aware
recommendation algorithms have been presented in the literature (Steck, 2018; Yao & Huang, 2017). Rekabsaz and Schedl (2020)
show that ranking models based on neural networks increase the gender bias toward male in retrieval results in comparison with
the classical exact-matching models. In the direction of analyzing algorithmic bias, De-Arteaga et al. (2019) discuss compounding
imbalances, a concept related to compounding injustices (Hellman, 2018) in political philosophy. De-Arteaga et al. show that if a
classifier performs with a lower sensitivity, i.e. true-positive rate (TPR), on the minority group in comparison with the majority
group, the imbalance between the groups in the final TPRs becomes larger than the initial imbalance in the underlying dataset. In
this case, the model (classifier) intensifies the existing imbalances in the dataset.

Besides fairness, recent work sheds light on various types of biases involved in RSs. For instance, recent research reveals a
popularity bias in current recommendation algorithms. In particular, it was shown that users are recommended items that do not
match their preference toward a certain popularity level (niche songs/artists are undervalued) (Abdollahpouri et al., 2019; Kowald
et al., 2020).
4
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Debiasing and improving fairness. State-of-the-art debiasing methods which are applicable to RSs are commonly categorized into four
approaches (Chen et al., 2020): (1) rebalancing, (2) regularization, (3) counterfactual intervention, and (4) adversarial training. In
the first category, the data or recommendation results are rebalanced in order to satisfy a certain fairness measure (e.g., demographic
parity). In such methods, debiasing is approached as a pre- or post-processing step. Common pre-processing approaches are: re-
labeling training data to achieve an equal number of relevant labels across the groups (Pedreshi et al., 2008), or resampling data to
have an equal number of training data (Geyik et al., 2019). Post-processing methods typically aim to change the output list of RSs
in a way that the results over each recommendation or the expectation of results satisfy targeted fairness measures (Biega et al.,
2018; Zehlike et al., 2017).

In the second category, debiasing is done by steering the optimization process of the recommendation model during training
through including a regularization term for fairness. Zemel, Wu, Swersky, Pitassi, and Dwork (2013) propose a general framework
which seeks to learn representations that contain sufficient information for the task in hand but are invariant regarding sensitive
attributes. Kamishima et al. adopted this framework to the context of RS and later generalized it to implicit feedback-based
recommender systems (Kamishima & Akaho, 2017; Kamishima, Akaho, Asoh, & Sakuma, 2012). Regularization-based approaches
are also studied in the context of biases in RSs, for instance by Abdollahpouri, Burke, and Mobasher (2017) to address popularity
bias.

Regarding the third category, Kusner, Loftus, Russell, and Silva (2017) introduce counterfactual fairness to RSs. In this method,
fairness criteria are satisfied when the evaluation of an individual in the counterfactual world – where the individual’s sensitive
attribute is changed by intervention – and in the real world are identical.

Finally, the category of debiasing through adversarial learning approaches the topic by creating fair representations through a
min–max game, which are agnostic to sensitive attributes (Bose & Hamilton, 2019). In this direction, recently, Beigi et al. (2020)
propose an adversarial training method which seeks to protect users’ sensitive attributes from an attacker who has access to users’
item list and recommendations.

In the study at hand, we investigate a method from the first category of approaches, namely rebalancing. In particular, we
investigate the use of a rebalancing technique on the training data of the RS algorithm to achieve statistical parity. For this purpose,
we resample the data points of the users of the minority group (female) in training data to achieve an equal number of users with
the ones of the majority group (male).

2.3. Datasets for music recommendation experiments

Investigating (music) recommendation algorithms in such a way that insights gained can generalize to real-world applications
requires access to suitable datasets containing data obtained in-the-wild. Although many corpora have been publicly released in the
last decade for the study of music RSs, the majority of these – unlike the proposed LFM-2b dataset – do not include users’ demographic
information. This omission of users’ demographics is particularly the case for corpora containing data from Spotify (Brost, Mehrotra,
& Jehan, 2019; Pichl, Zangerle, & Specht, 2015; Zamani, Schedl, Lamere, & Chen, 2019), Yahoo! (Dror, Koenigstein, Koren, &
Weimer, 2011), Echo Nest (Bertin-Mahieux, Ellis, Whitman, & Lamere, 2011), or Art of the Mix (McFee & Lanckriet, 2012).

However, to investigate bias in music RSs in general, and the so-called population bias (Olteanu et al., 2019) in particular, users’
emographic information becomes essential. The population bias, an aspect of which we study here, is a type of bias contained in
he data itself that arises from the distortion of a given population with respect to a target population. This is typical, for instance,
f social media, since some platforms are more frequently used by a specific group, e. g., females on Pinterest, while others by
nother group, e. g., males on Twitter.3 To investigate how state-of-the-art recommender algorithms might increase or mitigate a
ias already present in the data, a dataset containing users’ demographic information becomes indispensable. From the publicly
vailable datasets already presented in the literature, those containing such information are: (1) datasets collected from the music
latform Last.fm, i. e., Last.fm 360K and Last.fm 1K (Celma, 2010), LFM-1b (Schedl, 2016, 2019), and Music Listening Histories Dataset
MLHD) (Vigliensoni & Fujinaga, 2017), which include users’ gender, country, and age gathered at the time of their registration;
2) datasets created from data shared on other social media sites, such as Twitter, containing music-related hashtags mapped onto
usical metadata through open music encyclopediae such as MusicBrainz,4 i. e., MusicMicro (Schedl, 2013), Million Musical Tweets
ataset (MMTD) (Hauger, Schedl, Košir, & Tkalčič, 2013), and #nowplaying-RS (Poddar, Zangerle, & Yang, 2018). Nevertheless,
one of the datasets containing demographic information has been developed by having in mind the evaluation of population bias
eforehand, which impairs a clear understanding of their real potential for bias-related research: considering that users lacking on
emographics would be discarded for such a study, the actual value of these datasets for the assessment of bias in music RSs is
nknown. Furthermore, although the use of online music platforms and social media – namely the main sources for retrieving users’
emographic information in this context – has particularly increased in the last years,5 up-to-date datasets of this nature have not
een recently presented. Therefore, we introduce the LFM-2b dataset, an up-to-date large-scale corpus containing listening histories
rom Last.fm users collected over the last 15 years (from 2005 until 2020). In addition to this, the LFM-2b-DemoBias, i. e., a subset

of the former demographics specially tailored to assess population bias in music RSs, is also presented.

3 https://sproutsocial.com/insights/new-social-media-demographics/.
4 https://musicbrainz.org/.
5 https://ourworldindata.org/rise-of-social-media/.
5
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Table 1
Descriptive statistics for the LFM-1b, the LFM-2b, the LFM-2b\1b𝑑𝑖𝑓𝑓 , the LFM-2b-DemoBias, and the demographic groups Gender: F(emale), M(ale); Country: USA
(US), Russia (RU), Germany (DE), UK, Poland (PL), and Brazil (BR), Other (those with LEs than 2000 users); and Age: users under 30 years old and users at
least 30 years old (<30 and ≥ 30, respectively). Number of Users, Tracks, Artists, and Listening Events (LEs) are given across groups (All) and for each class.

ean and standard deviation (indicated after ±) of the number of Tracks, Artists, and LEs per User, are also indicated.
Dataset Users Tracks Artists LEs Tracks/User Artists/User LEs/User

LFM-1b 120,322 31,413,999 3,116,790 1,088,161,692 2659 ± 3600 541 ± 680 9,044 ± 16,244

LFM-2b 120,322 50,813,373 5,217,014 2,014,164,872 4316 ± 7465 881 ± 1566 16,740 ± 33,722

LFM-2b 1b𝑑𝑖𝑓𝑓 54,202 31,169,391 3,330,322 926,003,180 4476 ± 8000 975 ± 1843 17,084 ± 34,678

LF
M
-2
b-
De
m
oB
ia
s

All 60,972 44,917,375 4,571,252 1,678,139,732 6692 ± 9136 1256 ± 1852 27,523 ± 41,856

Gender
All 55,771 42,241,320 4,278,259 1,551,296,848 6725 ± 9088 1258 ± 1849 27,815 ± 41,713
F 15,802 12,888,611 1,422,563 326,594,434 4622 ± 6053 971 ± 1323 20,668 ± 30,104
M 39,969 37,873,456 3,789,381 1,224,702,414 7556 ± 9915 1372 ± 2008 30,641 ± 45,182

Country

All 55,190 43,217,992 4,278,259 1,572,924,251 6905 ± 9245 1290 ± 1808 28,500 ± 42,596
US 10,255 12,306,070 1,234,159 249,308,203 6391 ± 9009 1196 ± 1686 24,311 ± 41,219
RU 5,024 9,543,224 1,167,304 147,358,070 7438 ± 10,250 1383 ± 1966 29,331 ± 45,396
DE 4,578 7,493,831 750,767 119,863,992 6332 ± 8629 1238 ± 1712 26,183 ± 41,828
UK 4,534 7,051,041 773,461 111,651,943 6477 ± 8710 1304 ± 1856 24,625 ± 41,000
PL 4,408 6,101,991 662,239 138,766,755 6351 ± 8163 1127 ± 1645 31,481 ± 38,963
BR 3,886 4,969,966 495,944 114,103,850 5792 ± 7361 964 ± 1280 29,363 ± 40,601
Other 22,505 26,222,237 2,656,266 691,871,438 7524 ± 9766 1409 ± 1927 30,743 ± 43,813

Age
All 46,120 37,944,004 3,863,504 1,341,935,622 6944 ± 9166 1285 ± 1862 29,097 ± 42,390
≥30 8,892 16,611,760 1,630,651 245,663,773 8105 ± 11,804 1550 ± 2202 27,628 ± 48,742
<30 37,228 30,394,356 3,178,611 1,096,271,849 6666 ± 8390 1222 ± 1765 29,448 ± 40,719

3. LFM-2b Dataset

In this section, the LFM-2b and the LFM-2b-DemoBias datasets are introduced. Aspects such as data acquisition procedures,
ccessibility, as well as the main characteristics of each collection, will be discussed in the following.

.1. Data acquisition and accessibility

The LFM-2b(illion) dataset is a large collection of music listening events (LEs), i. e., users’ interactions with the music online
latform Last.fm,6 enriched by users’ demographic information (i. e., users’ age, country, and gender), music-related metadata (e. g.,
rtist and track names), and timestamps (specific time when a particular track was listened to by a given user). Following the
ethodology applied in the acquisition of the LFM-1b dataset (Schedl, 2016), the LFM-2b7 was collected from the web streaming

service Last.fm using the Last.fm API.8 The LFM-2b (encompassing more than 2 billion of LEs) is an extension of the former, containing
the same 120,322 users but with listening histories extended over 15 years: from 14 February 2005, until 20 March 2020; which
yields 2014, 164, 872 LEs in total.9

In order to enable reproducibility of our results and to foster further experiments on bias and fairness in the music recommenda-
tion domain, the LFM-2b dataset is stored in form of tabular data encoded in UTF-8. LEs are codified in a unique file containing for
each row a LE, for each column users’ demographics, music metadata, and the timestamp. Users’ demographics are: user ID (unique
for each user), gender information (female or male), country, and age. Musical attributes are: track ID (unique for each track) and
track identifier (track and artist names combination). Note that, with track we refer to each unique musical item produced by a
specific artist. Furthermore, user-track-playcount matrix (UTM) and user-artist-playcount matrix (UAM), i. e., two 2-dimensional
matrices containing the interactions between unique user-track and user-artist, respectively, are also provided as sparse matrices in
Python NumPy format.10

3.2. From LFM-1b to LFM-2b

In Table 1, descriptive statistics for the LFM-1b, the LFM-2b, the LFM-2b\1b𝑑𝑖𝑓𝑓 (set difference between LFM-1b and LFM-2b),
and the LFM-2b-DemoBias (Demographic Bias subset), are displayed.11 For each dataset, the number of Users, Tracks, Artists, and

6 https://www.last.fm/.
7 The LFM-2b dataset used in our study is considered derivative work according to paragraph 4.1 of Last.fm’s API Terms of Service (https://www.last.fm/

api/tos). The Last.fm Terms of Service further grant us a license to use this data (according to paragraph 4).
8 https://www.last.fm/api.
9 Note that 66,120 users included in LFM-1b have become inactive since 2014. Therefore, the extension provided in LFM-2b concerns only listening events

for 54,202 users of the LFM-1b dataset.
10 The LFM-2b is freely accessible at http://www.cp.jku.at/datasets/LFM-2b/.
11 Please note that the number of artists and tracks reported here slightly differs from the numbers reported in Schedl (2016) because of some errors in the

original LFM-1b dataset, which we corrected when creating LFM-2b.
6

https://www.last.fm/
https://www.last.fm/api/tos
https://www.last.fm/api/tos
https://www.last.fm/api
http://www.cp.jku.at/datasets/LFM-2b/
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Listening Events (LEs), as well as the mean and standard deviation (indicated after ±) of users’ interactions in terms of (unique)
tracks per user, (unique) artists per user, and total LEs per user (see Tracks/User, Artists/User, and LEs/User, respectively) are
reported.

Although there is only a difference of 6 years in the length of the listening histories collected for the LFM-1b12 w. r. t. the
FM-2b dataset, the latter represents a considerably larger range of listened tracks and artists: 31,413,999 versus 50,813,373,

and 3,116,790 versus 5,217,014 for LFM-1b versus LFM-2b (see Track and Artist, respectively, in Table 1). Similarly, the LFM-2b
contains approximately double the number of LEs than the LFM-1b: 1,088,161,692 versus 2,014,164,872 (see LEs in Table 1). When
evaluating the set difference between LFM-1b and LFM-2b, i. e., the LEs from LFM-2b collected only during the last 6 years (see
LFM-2b\1b𝑑𝑖𝑓𝑓 ), we observe that the number of LEs from LFM-2b\1b𝑑𝑖𝑓𝑓 is comparable to the one from LFM-1b (collected during

years), which indicates that the users have increased their music consumption within the platform in the last 6 years: 1,088,161,692
ersus 926,003,180, respectively, for LFM-1b versus LFM-2b\1b𝑑𝑖𝑓𝑓 (see LEs in Table 1). This goes along with the general raise in
ocial media usage displayed in recent years, which emphasized the importance of using up-to-date datasets in the evaluation of
sers’ music consumption.

By calculating the differences in the coefficient of variation (CV𝑑𝑖𝑓𝑓 ), i. e., the difference in the ratio of the standard deviation
o the mean (between LFM-1b and LFM-2b\1b𝑑𝑖𝑓𝑓 ) for each type of interaction, a general increment in the variability of the users’
onsumption habits is revealed. The smallest increment is shown for the interactions in terms of LEs (see LEs/User for LFM-1b
ersus LFM-2b\1b𝑑𝑖𝑓𝑓 in Table 1), yielding CV𝑑𝑖𝑓𝑓 = 20%. The largest increment is found for the interactions in terms of artist
see Artists/User for LFM-1b versus LFM-2b\1b𝑑𝑖𝑓𝑓 in Table 1), yielding CV𝑑𝑖𝑓𝑓 = 70%. In between, the interactions in terms of
rack (see Tracks/User for LFM-1b versus LFM-2b\1b𝑑𝑖𝑓𝑓 in Table 1), yielding CV𝑑𝑖𝑓𝑓 = 50%. Overall, this indicates that in the last
years, users’ listening behavior changed especially concerning artist variability, meaning that many users increased substantially

he number of artists they listen to. It is also evidenced by comparing the coefficient of variation (CV) for the interaction Artists/User
f each collection: CV = 190% versus CV = 120% for Artists/User in LFM-2b\1b𝑑𝑖𝑓𝑓 versus LFM-1b, respectively. Differently, the
mount of interactions within the platform remained more stable across users: CV = 200% versus CV = 180% for LEs/User in LFM-
b\1b𝑑𝑖𝑓𝑓 versus LFM-1b, respectively. As expected when working with data collected in-the-wild, both LFM-1b and LFM-2b\1b𝑑𝑖𝑓𝑓
isplay great differences across users’ consumption behavior, i. e., some users have a much lower number of interactions than others.
et, LFM-2b\1b𝑑𝑖𝑓𝑓 indicates that this differences across users have become more salient in terms of artist, which indicates an

ncreased interest of users toward musical diversity. All in all, LFM-2b, being the union between LFM-1b and LFM-2b\1b𝑑𝑖𝑓𝑓 , presents
considerably higher amount of LEs per user w. r. t. LFM-1b. Furthermore, it is more up-to-date and shows also a much higher artist
ariety; thus, being particularly suitable for assessing the performance of music recommender systems in general and for studying
heir bias in particular.

.3. LFM-2b-DemoBias: a collection for studying fairness

In order to examine data and algorithmic/model bias in music RSs, along to the LFM-2b dataset, we introduce the LFM-2b-
emoBias (Demographic Bias) subset, which contains music LEs for users with valid demographic information in terms of age,
ender, and country. Since bias might be independently investigated for gender, age, and country, we intentionally consider in
he LFM-2b-DemoBias users who have at least one of the demographic attributes, instead of all three. Note that all the filtered
ollections, i. e., the subsets at the intersection between several demographic attributes (e. g., LEs for users with a valid gender and
ge information) as well as the playcount matrices, can be inferred from the LFM-2b directly.

The LFM-2b-DemoBias encompasses a total of 60,972 users (see All for LFM-2b-DemoBias in Table 1), from which 55,771 provide
ender information (see All for Gender in Table 1), 55,190 country information (see All for Country in Table 1), and 46,120 age
nformation (see All for Age in Table 1). Within each demographic group, i. e., gender, country, and age, there is an unbalanced
istribution of users between sample: for instance, 15,802 female versus 39,969 male (see F and M for User in Table 1); 10,255 users
rom the USA, i. e., the first ranked country, which consists of more than twice as many users in comparison to any other country. (see
S for User in Table 1); 37,228 users under thirty years versus 8,892 users above (see <30 and ≥ 30 for User in Table 1). As expected,

his is similarly displayed when evaluating the collection at the track and artist level (see differences between sample within the
ender, Country, and Age groups for Track and Artist in Table 1). We observe, indeed, a great diversity between countries concerning

he unique artists listened to: despite their differences in number of users, the USA and Russia both show a high number of unique
rtists (see 1,234,159 and 1,167,304, for Artists in US and RU in Table 1); Germany, the UK, and Poland – while similar in number
f users – show a considerably lower diversity (750,767, 773,461, and 662,239 Artists in Table 1). Such unbalanced distributions,

characteristic of datasets collected in-the-wild, indicates the population bias of LFM-2b, in which male, US, and young listeners
represent the dominant group of users. In other words, the population of the LFM-2b-DemoBias is distorted w. r. t. the real world
population, which does not contain such a bias. The population bias shown in LFM-2b-DemoBias makes this collection particularly
suited to investigate model/algorithm bias, since it enables to assess to which extent a given recommender algorithm might create
a model that reflects, amplifies, or alleviates this data bias.

Since the aim of the study at hand is to investigate gender fairness, we further inspect the interaction of the gender attribute in
LFM-2b-DemoBias with the other two demographics, i. e., country and age. Therefore, in Fig. 1, the distribution of listening events
across users containing information for at least two demographic attributes, i. e., gender and country (see Fig. 1a), or gender and

12 The listening histories of LFM-1b cover more than 9 years: from February 2005 until August 2014.
7
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Fig. 1. Distribution of thousands of listening events per user across countries (a) and ages (b) for female and male (indicated in red and blue, respectively).
The median and the four quartiles are indicated: first quartile, second quartile, median, third quartile, and fourth quartile (from left to right). Countries with
more than 2000 users are indicated individually, with LEs than 2000 aggregated (and denoted as ‘‘Other’’); for the countries’ abbreviations and number of users
er country, see caption of Table 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ge (see Fig. 1b) is displayed. Although the US is the country with more users, their interactions within the platform are generally
ower than in other countries with much users, such as Poland. This is particularly clear for male users: those from the US show the
owest median across male (16,108), those from Poland the highest (21,223); see median for male US and male PL, respectively, in
ig. 1 (upper plot). This higher consumption from Polish users is also clearly displayed for female, whose median (19,813) is not
nly almost as high as that displayed by male users, but is as high as the median for all the other countries with less than 2000
sers (i. e., other), and overtakes that displayed by male users from many countries, including the US; see median for female PL
nd male other and US, in Fig. 1 (upper plot). Concerning age, similar trends between female and male can be observed for the
wo displayed age groups, i. e., above and below the thirties: for both, female and male, only one fourth of the users per group
under and over 30) produces more than half of the LE; see the fourth quartile for each gender and group, in Fig. 1 (lower plot).
his skewed distribution was already shown in the LFM-1b dataset, and it is also clearly shown for the demographic information of
ountry (see Fig. 1, upper plot).
8
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4. Measuring user group fairness in recommendation

In this section, we define and formulate our approach to quantify fairness/bias of a RS, as well as the compounding factor. We
irst explain RecGap, a metric of measuring unfairness of RSs from the point of view of user groups (Section 4.1). The proposed
ecGap metric is closely related to the Gap metric introduced by De-Arteaga et al. (2019) while expands Gap to any arbitrary

evaluation measure, making it suitable for RSs. We then describe the concept of compounding imbalances in RSs, and suggest a
metric to capture this concept (Section 4.2). The metrics discussed in this work are formulated for an arbitrary number of user
groups (non-binary setting) for the sensitive attribute. The metrics are defined for the set of user groups 𝐺, which, in the case of
the binary setting of the sensitive attribute gender, is equal to 𝐺 = {𝑓𝑒𝑚𝑎𝑙𝑒, 𝑚𝑎𝑙𝑒}.

4.1. RecGap : Recommendation unfairness metric

Our notion of fairness of a RS closely relates to the equal opportunity metric of Hardt et al. (2016). We consider a RS to be fair
if it performs equally good across the groups of users, according to any arbitrary evaluation metric. To measure the fairness of a
recommender algorithm, first an RS model is trained – in the case that the algorithm requires training – and then its recommendation
predictions are evaluated separately for each groups of users in the test set. The fairness of the RS model regarding the given
evaluation metric is defined as the mean absolute differences between the average evaluation scores (across all users) in each pair
of groups. We refer to this metric as RecGap, formulated as follows:

𝑅𝑒𝑐𝐺𝑎𝑝𝜇 =

∑

⟨𝑔,𝑔′⟩∈𝐺𝑝𝑎𝑖𝑟
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|

(1)

where 𝐺𝑝𝑎𝑖𝑟 is the set of groups pairs,13 𝑈𝑔 denotes the set of users in group 𝑔, and 𝜇(𝑢) returns the evaluation results of the metric
for user 𝑢 (assuming the availability of corresponding ground-truth data). Intuitively, the RecGap metric quantifies the disparity

between average results, in terms of 𝜇(𝑢), of different user groups.
The metric 𝜇 can be any evaluation measure that can be calculated on user level (and aggregated on user-group level) such as

NDCG, diversity, recall, etc. According to this formulation, RecGap uses the average values across users (as common in evaluation
metrics), and does not impose the groups to have an equal number of users. This characteristic of RecGap is particularly important
in real-world scenarios, as the number of users across sensitive attributes are typically different. 𝑅𝑒𝑐𝐺𝑎𝑝𝜇 can have zero or positive
values, where zero indicates that the recommendation algorithm is fair, while a higher positive value shows the existence of a higher
degree of unfairness. Interpreting the magnitude of 𝑅𝑒𝑐𝐺𝑎𝑝𝜇 depends on the considered 𝜇 function and the number of groups. As a
simple example for the recall metric, let us consider a binary gender setting with the average recall scores of 0.5 and 0.3 for male
and female, respectively. In the example, 𝑅𝑒𝑐𝐺𝑎𝑝Recall is equal to 0.2, which implies that the average male user receives in their
top-10 results an increase of 20 percentage of the relevant items, when compared with the ones provided to the average female
user.

In the particular case of 𝐺 being a binary set, 𝑅𝑒𝑐𝐺𝑎𝑝𝜇 is simplified to the absolute difference of the groups’ means of evaluation
scores. In this case, the magnitude of 𝑅𝑒𝑐𝐺𝑎𝑝𝜇 can be assessed by applying hypothesis testing, which examining whether the
difference between groups is statistically significant, indicates to which extent the 𝑅𝑒𝑐𝐺𝑎𝑝𝜇 is meaningful or not. Finally, the
direction of bias/unfairness in RecGap can simply be identified by comparing the degrees of the groups’ mean values: the model is
biased toward the group with the higher mean score (considering that higher 𝜇 values means higher gains).

4.2. Compounding imbalances in recommender systems

Our definition of compounding imbalances follows the work of De-Arteaga et al. (2019) by extending the concept of compounding
to RSs according to any arbitrary evaluation metric. Considering a recommendation algorithm with some degree of unfairness across
user groups (𝑅𝑒𝑐𝐺𝑎𝑝 ≠ 0), we aim to quantify the extent to which the algorithm compounds the initial imbalances in the data given any
arbitrary evaluation metric. More concretely, similar to De-Arteaga et al. (2019), we expect that the gain of each group according to
an evaluation metric to be proportional to its population, where otherwise the population bias is compounded by the algorithm.

To define such a metric, we first introduce the population distribution 𝐵 as the distribution of the portions of users in groups.
For instance in the case of a binary gender setting, 𝐵 can be 𝐵 = [0.8, 0.2], meaning that 80% of the users are male and the rest are
female. Given a recommendation algorithm and the evaluation metric 𝜇, we define the metric scores distribution over user groups,
denoted by 𝐶𝜇 = {𝑐𝜇𝑔 |𝑔 ∈ 𝐺}. Each 𝑐𝜇𝑔 element of 𝐶𝜇 is a probability, defined as the sum of the evaluation scores of all users in group
𝑔 divided by the sum for all users in all groups:

𝑐𝜇𝑔 =

∑

𝑢∈𝑈𝑔
𝜇(𝑢)

∑

𝑔′∈𝐺
∑

𝑢′∈𝑈𝑔′
𝜇(𝑢′)

(2)

The 𝐶𝜇 distribution contains the portion of the score of the metric 𝜇 regarding each group. Following the above example of the
binary genders for a RS biased toward males according to NDCG (𝑅𝑒𝑐𝐺𝑎𝑝NDCG ≠ 0), the distribution of NDCG scores might results in

13 𝐺𝑝𝑎𝑖𝑟 = {⟨𝑔, 𝑔′⟩|𝑔, 𝑔′ ∈ 𝐺, 𝑔 ≠ 𝑔′}.
9
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Table 2
Statistics of the LFM-2b-DemoBiasSub dataset. Number of Users, Tracks, Artists, and LEs are reported across F(emale)
and M(ale) separately and also together (All). Mean and standard deviation (indicated after ±) of the interactions of
users with tracks, artists, and listening events are indicated in the last three columns, respectively.

Gender Users Tracks Artists LEs Tracks/User Artists/User LEs/User

All 19,972 99,831 40,182 19,906,272 142 ± 172 128 ± 150 997 ± 1571
F 4,415 70,980 32,414 3,397,310 101 ± 121 93 ± 110 769 ± 1158
M 15,557 99,810 40,176 16,508,962 153 ± 182 138 ± 158 1061 ± 1664

𝐶NDCG = [0.85, 0.15], namely the value 0.85 for male and 0.15 for female. Now, comparing 𝐶NDCG with the population distribution
= [0.8, 0.2], we observe that the bias of the population toward male (80% to 20%) has now intensified (toward male) in the results

f the recommnender (85% to 15%). In other words, the recommender algorithm compounds the population bias.
To characterize the differences between these distributions as one single number, we introduce the compounding factor metric,

efined as the Kullback–Leibler (KL) divergence between the distributions. The compounding factor of a recommendation algorithm
egarding the metric 𝜇 (𝐶𝑜𝑚𝑝𝐹𝑐𝑡𝜇) is therefore formulated as:

𝐶𝑜𝑚𝑝𝐹𝑐𝑡𝜇 = KL
(

𝐵‖‖
‖

𝐶𝜇
)

(3)

he value of 𝐶𝑜𝑚𝑝𝐹𝑐𝑡𝜇 metric shows the extent of the divergence of 𝐶𝜇 from 𝐵, where higher values indicate higher de-
rees of bias compounding by the algorithm. This value in the example above, given 𝐵 = [0.8, 0.2] and 𝐶NDCG = [0.85, 0.15], is
𝑜𝑚𝑝𝐹𝑐𝑡NDCG = 0.0101.

. Experiment setup

In this section, we explain our experiment setups. Overall, we conduct all the experiments on the data of the Gender subgroup in
FM-2b-DemoBias considering two experiment scenarios. In the first one, i. e., Standard, we carry out the experiments on the dataset
ithout any intervention. This scenario reflects how the recommender systems algorithms under investigation would behave in

he wild and what would be their unfairness treatments of users on the basis of gender. The second scenario, i. e., Resampled,
onsiders instead a debiasing procedure applied on the original dataset. The debiasing attempts to reduce the difference in treatment
f males and females and corresponds to a scenario where the acknowledged gender-based differences are addressed. In each
cenario, we study a variety of core collaborative filtering (CF) algorithms of a different nature (e. g., matrix factorization Billsus,
azzani, et al., 1998 and autoencoders Zhang, Yao, Sun, & Tay, 2019), as well as several evaluation metrics (both accuracy-
elated and beyond-accuracy). In the subsequent subsections, we detail the processing steps performed to obtain the dataset used
n the experiments (Section 5.1), all algorithms investigated (Section 5.2), the procedure of training and evaluation of algorithms
Section 5.3), the experiments scenarios (Section 5.4), the used metrics (Section 5.5), the used significance tests (Section 5.6),
nd our approach to hyper-parameter tuning (Section 5.7). Our code for reproducing the experiments is publicly available at
ttps://github.com/CPJKU/recommendation_systems_fairness.

.1. Data processing and preparation

In our experiments, we focus on the Gender subgroup of the LFM-2b-DemoBias (see the part related to Gender in Table 1). We
rocess the data of this subgroup according to the following filtering criteria. First, we consider only user–track interactions with a
laycount (PC) > 1. This removes possibly-noisy user–track interactions likely introduced by single interactions. Second, we consider
nly tracks listened to by at least 5 different users and users that listened to at least 5 different tracks. These thresholds, commonly
sed in previous work (Bauer & Schedl, 2019; Liang, Krishnan, Hoffman, & Jebara, 2018; Ning & Karypis, 2011; Schedl, 2017), are
ecessary for a meaningful use of collaborative filtering algorithms. Third, we consider only LEs collected within the last 5 years.
his makes our study focused on the users’ most recent listening behaviors which, as shown in Section 3, have considerably increased

n the last years. Finally, we transform the user–track interactions to binary values, namely by setting a user–track interaction to 1
f the user has listened to the track at least once, to 0 otherwise.

The resulting dataset consists of 23,272 users – a favorable setting for studying fairness from user perspective – but also a
ery high number of items/tracks (1,606,686 in total), which makes it impractical for large-scale recommendation experiments.
e address this issue by randomly sampling 100,000 tracks. Note that applying random sampling guarantees that tracks covering

ifferent levels of popularity are included in the final dataset.14 We refer to this final subset as LFM-2b-DemoBiasSub. The statistics of
he dataset are reported in Table 2. We should note that even with this reduction, the LFM-2b-DemoBiasSub dataset is still larger than
he Million Song Dataset (Bertin-Mahieux et al., 2011) (containing 41,000 items), which is commonly used in research on music
Ss.

14 We consider the LFM-2b-DemoBiasSub dataset a reliable representation of the Gender subgroup of LFM-2b-DemoBias. This can be seen by the small differences
n the coefficients of variation (CV𝑑𝑖𝑓𝑓 ) between the LFM-2b-DemoBiasSub and the Gender group of LFM-2b-DemoBias across interactions: CV𝑑𝑖𝑓𝑓 = 10% for
10

racks/User; CV𝑑𝑖𝑓𝑓 = 20% for Artists/User; CV𝑑𝑖𝑓𝑓 = 0% for LEs/User.

https://github.com/CPJKU/recommendation_systems_fairness
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5.2. Recommender system algorithms

We investigate to which extent different recommendation algorithms for implicit data yield different results, depending on
sers’ demographic traits. The selected algorithms cover different types of collaborative filtering approaches. In particular, we study
lgorithms based on non-personalized recommendation, matrix factorization, 𝑘-nearest neighborhood, and autoencoders, which have

been central in RS research. All the algorithms are applied to a user–item interaction matrix, where users are represented in the
rows and items in the columns. If a user interacted with an item, the corresponding value in the matrix is 1 and otherwise 0. In the
following, we provide a brief explanation of each of the RS algorithms studied in this work:

∙ Popular Items (POP) provides a simple non-personalized baseline. It recommends to the users the same set of top-𝑛 tracks,
where the tracks are sorted by overall popularity (how many users listened to that track).

∙ Item k-Nearest Neighbors (ItemKNN) (Sarwar, Karypis, Konstan, & Riedl, 2001) is a basic memory-based recommendation
approach based on computing item–item similarity. In this approach, an item is recommended to a user if the item is similar
to the items previously selected by the user. In the case of CF systems, items selected by the same group of users are considered
more similar than items with non-overlapping user groups.

∙ Alternating Least Squares (ALS) (Hu, Koren, & Volinsky, 2008) falls in the category of matrix factorization approaches, a wide-
spread family of algorithms since the Netflix challenge (Billsus et al., 1998). ALS employs an alternating training procedure
to obtain a set of user and item embeddings, in such a way that the dot product of the embeddings approximates the original
user–item matrix.

∙ Bayesian Personalized Ranking (BPR) (Rendle, Freudenthaler, Gantner, & Schmidt-Thieme, 2012) provides an optimization
function that, instead of predicting the rating for a specific pair of user and item, ranks the items consumed by the users
according to their preferences (hence, personalized ranking). To this end, BPR defines an implicit order between pairs of
items. BPR maximizes the difference between the rating prediction of items that have interactions with the user and the ones
with no interaction. We apply the BPR objective function on matrix factorization embeddings.

∙ Sparse Linear Methods (SLIM) (Ning & Karypis, 2011) is a linear model that aims to compute top-𝑛 recommendations, by
factorizing the item–item co-occurrence matrix under the non-negativity, 𝐿1, and 𝐿2 constraints. The learned item coefficients
are used to sparsely aggregate past user interactions and predict the recommended items of the user.

∙ Variational Autoencoders (MultiVAE) (Liang et al., 2018) is a variational autoencoder architecture that first projects the
sparse user’s interaction vector to a latent distribution space, used afterwards to generate a probability distribution over all
the items. MultiVAE employs multinomial likelihood and a different regularization procedure involving linear annealing.

5.3. Experiment procedure

In this section, we describe in detail the procedure of training and evaluation of the algorithms, accompanied with an applied
cross validation method.

For the recommendation task at hand, different evaluation objectives and data splits have been proposed in the RS litera-
ture (Meng, McCreadie, Macdonald, & Ounis, 2020; Sun et al., 2020). In our experiments, we employ a User Split strategy (Meng
et al., 2020) of the dataset, commonly used for autoencoder-like algorithms (Liang et al., 2018; Sachdeva, Manco, Ritacco, & Pudi,
2019; Steck, 2019), among others. The splitting strategy is shown in Fig. 2a. The 19,972 users of the LFM-2b-DemoBiasSub dataset
are partitioned in train, validation, and test set using a common 60-20-20 ratio split. The users in the training set, along with all
their interactions, are used to train the algorithms in analysis (Fig. 2b). The evaluation procedure (either validation or testing) is
carried out by feeding 80% of the users’ items sampled uniformly at random to the models and using the remaining 20% as ground
truth for calculating the metrics (Fig. 2c). Intuitively, the evaluation procedure forces the models to learn the broad music tastes of
the users instead of only predicting what the user is going to listen next (e. g., as in leave-k-out strategies Meng et al., 2020). This
experiment setup is also referred to as strong generalization (Liang et al., 2018; Marlin, 2004) since we evaluate the recommender
systems on novel users not encountered during training.15

In order to provide evaluation for all users in the dataset and also avoid possible biases introduced by the user-sampling strategy
mentioned above, we follow the standard practice in machine learning and perform 5-fold cross validation as shown in Fig. 3a. In
more detail, we split the users in 5 equal-sized groups and use 3 groups for training (60% of the users), 1 for validation (20% of the
users), and 1 for testing (20% of the users). For each fold, we follow the training and evaluation procedure described above. We
switch the groups in a round-robin fashion until each one of the user groups is used as a test set. Applying cross-validation provides
better estimates for the metrics and also allows testing all the users in our dataset, leading to a better comparison based on the
gender attribute.

15 In contrast, weak generalization, instead, refers to the setup where part of the user listening history is used for training (e. g., leave-k-out splitting strategies).
n these cases, the model is already exposed to the consumption patterns of these users, possibly leading to better prediction performance during inference and,
11

ence, higher accuracy metrics.
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Fig. 2. User-based split. As shown in Fig. 2a, 60% of users in the datasets are used as training data, 20% as validation data, and 20% as test data. The users,
and all their items, are used to train the model under investigation (cf. Fig. 2b). For the evaluation procedure (cf. Fig. 2c), 80% of the test user’s items randomly
selected are provided as input to the model. Subsequently, using the remaining 20% of the data as holdout set (𝐼ℎ𝑜𝑙𝑑𝑜𝑢𝑡), the metrics are computed on the model
output (predicted items 𝐼𝑝𝑟𝑒𝑑 ) and the holdout set.

Fig. 3. 5-fold cross validation and the resampling procedure (cf. Figs. 3a and 3b, respectively). The 5-fold cross validation cyclic procedure guarantees that
every user ends up in a test set once (shown with the darker texture for each of the five iterations) and in a validation set once (shown with the lighter texture).
In Fig. 3b, the resampling procedure is illustrated for a specific fold: the female users in the training data are resampled until they match in frequency the male
users.

5.4. Experiment scenarios

We perform all the experiments bearing in mind two scenarios: Standard and Resampled. In the Standard scenario, we train the
system without any intervention on the data, which corresponds exactly to the procedures described in Section 5.3. For the Resampled
scenario, we attempt to debias the recommendation algorithm by intervening on the underlying dataset using resampling, as shown
12
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in Fig. 3b. Firstly, following the procedure outlined in Section 5.3, we split the users in training, validation, and test, as done in the
Standard scenario. Secondly, we resample the users of the minority group (female) in the training set until they match the number
of training data points of the majority group (male). Note that when a user is resampled, her listening history is duplicated and
used fully in the training procedure. Following Geyik et al. (2019), by providing a balanced representation of male and female users
during training, we aim to promote equally good recommendations at inference time. Furthermore, since the validation and test
sets are left untouched, the evaluation results from the Standard and Resampled scenarios are comparable.

5.5. Evaluation metrics

We evaluate the performance of the algorithms using two accuracy-based metrics: recall and Normalized Discounted Cumulative
Gain (NDCG). We also evaluate the results using two beyond-accuracy metrics: diversity and coverage. All metrics are calculated
over a ranking result up to the position 𝐾. We provide a brief explanation of the metrics in what follows.

Recall@K for user 𝑢 is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾(𝑢) = 1
min(𝐾,𝑁𝑢)

𝐾
∑

𝑖=1
𝑟𝑒𝑙(𝑖) (4)

where 𝑁𝑢 is the number of items in the test set which are relevant to 𝑢, and 𝑟𝑒𝑙(𝑖) is an indicator function signaling whether the
recommended track at rank 𝑖 is relevant to 𝑢 (i.e., 𝑟𝑒𝑙(𝑢) = 1) or not relevant to 𝑢 (i.e., 𝑟𝑒𝑙(𝑢) = 0). Recall@K quantifies the ability of
retrieving relevant items for the user in analysis. It ranges from 0, where no relevant items for the user are retrieved, to 1, where
all relevant items are present in the first k position.

NDCG@K is defined as

𝑁𝐷𝐶𝐺@𝐾(𝑢) =
𝐷𝐶𝐺@𝐾(𝑢)
𝐼𝐷𝐶𝐺@𝐾(𝑢)

(5)

where 𝐼𝐷𝐶𝐺@𝐾(𝑢) is the ideal 𝐷𝐶𝐺@𝐾 for user 𝑢, obtained when all items in 𝑢’s test set are ranked at the top , and 𝐷𝐶𝐺@𝐾(𝑢)
is the discounted cumulative gain at position 𝐾 for user 𝑢, given by

𝐷𝐶𝐺@𝐾(𝑢) =
𝐾
∑

𝑖=1

𝑟𝑒𝑙(𝑖)
log2 (𝑖 + 1)

(6)

where 𝑟𝑒𝑙(𝑖) is the same indicator function as above. Compared to Recall@K, NDCG@K is an accuracy metric that not only quantifies
the ability of retrieving relevant items, but also the ability of ranking them. A recommender system algorithm that provides relevant
items at the top of the list will score higher in NDCG@K than an algorithm for which the relevant items are at the bottom. This
behavior is enforced by ‘‘discounting’’ items according to their position, i. e., computing the Discounted Cumulative Gain (DCG).
To normalize the score between 0 and 1, the DCG is then compared to the so-called ‘‘ideal ranking’’ obtained by placing all the
relevant items at the top of the list.

Diversity is calculated for each user as normalized Shannon entropy on the artist level:

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦@𝐾(𝑢) = − 1
log2 |𝐴𝑢|

|𝐴𝑢|
∑

𝑖=1
𝑝(𝑎𝑖) log2 𝑝(𝑎𝑖) 𝑎𝑖 ∈ 𝐴𝑢 (7)

where 𝐴𝑢 is the set of unique artists whose tracks were recommended (in top 𝐾) to the user 𝑢, and 𝑝(𝑎𝑖) is the proportion of the
tracks by the artist 𝑎𝑖 in top 𝐾 of the recommendation list. 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦@𝐾(𝑢) is therefore equal to 1 if every track among the top 𝐾
tracks recommended to the user 𝑢 has a different artist. 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦@𝐾(𝑢) becomes 0 if all top 𝐾 recommended tracks come from the
same artist.

Finally, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒@𝐾 is defined as the fraction of tracks in the test set that are included in the top 𝐾 recommendation list of at
least one user.

In our experiments, we compute the metrics for 𝐾 = {5, 10, 50}. This aims to model different user needs, ranging from a user
interested in only a few top recommendations, to a user who inspects a longer list of recommended items. When discussing results
in detail (in Section 6), we focus on the setting 𝐾 = 10 because this is the number of tracks Last.fm’s recommender displays to their
users by default. Results for 𝐾 = {5, 50} are provided in Appendix A.

5.6. Significance test

We test the significance of the differences of results in two settings. The first setting (considered to examine the results of RecGap)
regards the differences of one recommendation algorithm between two groups with different sizes, i. e., females versus males. The
second setting concerns the differences of one recommendation algorithm between two application scenarios, i. e., the Standard
and the Resampled (see Section 5.4). In both cases, we perform the Mann–Whitney U test, also known as the Wilcoxon rank-sum
test (McKnight & Najab, 2010).16 In addition, pairwise comparisons across the different models for each scenario are carried out.
For these, Dunn test and Bonferroni correction for the 𝑝-values adjustment is applied.

16 Note that we consider a non-parametric test since our data do not follow a normal distribution as Kolmogorov–Smirnov test rejects the null-hypothesis for
13

ll the considered samples.
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Table 3
Overall results of accuracy (NDCG and recall) and beyond-accuracy (diversity and coverage)
metrics on the RS algorithms: POP, ItemKNN, BPR, ALS, SLIM, and MultiVAE; considering
two experiment scenarios: Standard and Resampled for all users together (female and male). All
results are rounded to the third digit. Statistically significant differences between the Standard
and Resampled datasets for each model and metric are indicated with an asterisk (∗) on the highest
value between Standard and Resampled. Highest values for each metric are shown in bold.

Model Scenario NDCG@10 Recall@10 Diversity@10 Coverage@10

POP Standard .046 .043 .983 .000
Resampled .045 .043 .987∗ .000

ItemKNN Standard .301∗ .284∗ .984 .157∗
Resampled .292 .275 .985∗ .128

BPR Standard .127 .117 .988 .126
Resampled .123 .115 .988 .124

ALS Standard .241 .220 .979∗ .055∗

Resampled .238 .218 .978 .052

SLIM Standard .364 .340 .991 .115∗

Resampled .359 .333 .990 .110

MultiVAE Standard .192∗ .175∗ .985 .046
Resampled .183 .167 .985 .048

Considering that we carry out the experiments through 5-fold cross-validation, in each experiment, five independent statistical
ests (one for each fold) are performed. Subsequently, the resulting 𝑝-values were combined by applying the weighted Stouffer’s
-method (Mosteller, Bush, & Green, 1954; Stouffer, Suchman, DeVinney, Star, & Williams Jr, 1949).17 We select the weighted
-method as it is robust to asymmetry problems (Whitlock, 2005) and less sensitive to a single low 𝑝-value, i. e., in order to achieve
low combined 𝑝-value, several consistently low 𝑝-values are required (Darlington & Hayes, 2000). Furthermore, the weighted

-method is also suitable when the combined 𝑝-values come from multiple tests of the same hypothesis (Whitlock, 2005), as in our
tudy. In all our experiments, we consider the results with 𝑝 < 0.01 as significant.

.7. Hyper-parameters and training

We select the hyper-parameters of the algorithms under investigation by performing a grid search over different parameters and
inding the best set of parameters according to the NDCG@50 results on the validation set. After validation, the best-performing
odel is selected and finally evaluated on the test set. We reselect the hyper-parameters for each fold.

In the following, we report the range of hyper-parameters relevant to each model.
For ItemKNN, we select the number of neighbors from {3, 5, 10}, and the similarity function among the cosine metric, Pearson

orrelation coefficient, and Jaccard coefficient. We also examine the effect of removing normalization in the above-mentioned
imilarity functions (by dismissing the denominator). We select the value for shrinkage (Bell & Koren, 2007) between {0, 10, 100}.

For ALS and BPR, we select the embedding size among {10, 100, 1000}, the number of iterations for training between {500,
000}, and the regularization factor from {1e−3, 1e−4}. For BPR, we further tune the learning rate with the values {1e−3, 1e−4}.

For SLIM, we explore different 𝛼 values (sum of the 𝐿1 and 𝐿2 coefficients) and 𝐿1 𝑟𝑎𝑡𝑖𝑜𝑠 (ratio of 𝐿1 coefficient in 𝛼). We search
he 𝛼 value among {0.5, 0.1, 0.01, 0.001}, and 𝐿1 𝑟𝑎𝑡𝑖𝑜 from {0.1, 0.01}. We set the number of iterations to 500.

For MultiVAE, we explore different (symmetric) architectures and annealing procedures. We set the total number of epochs
o 100 and the learning rate to 1e−3. We examine various architectures, namely I-500-I, I-1000-I, and I-1000-500-1000-I. In the
rchitectures, I is the total number of tracks, the numbers in the middle denote the dimensions of the latent embeddings, and
he numbers in between (when existing) are the intermediary dimensions of the feed-forward networks with hyperbolic tangent
on-linearity.18 Regarding the annealing procedure described in the original paper (Liang et al., 2018) , we linearly anneal the
egularization parameter by choosing the beta steps from the values {5000, 100 000}. We set the annealing cap to 1, i. e., the
egularization is performed until its maximum value.

. Results and discussion

In this section, we report the results of our experiments and discuss the findings. We first present the overall performance
f the recommendation algorithms/models (Section 6.1), and then report the results of measuring fairness in recommendations
Section 6.2). In the current section, we only report the results of the ranking up to the position 𝐾 = 10. The results regarding other
ositions (5 and 50) are reported in Appendix A. Furthermore, we carry out experiments also on the LFM-1b dataset with the exact
xperiment settings, whose results are reported in Appendix B.

17 Note that, unlike the other metrics, coverage is defined only at the level of group of users instead of single users, meaning that one global measure is
btained as output for each cross-validation. Hence, Mann–Whithney U test was applied across folds without the need of combining 𝑝-values.
18 We do not observe any further improvement by increasing the layers of the feed-forward networks and/or the size of dimensions.
14
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Table 4
NDCG@10 results on the users of the male/female (M/F) groups for the Standard and Resampled scenarios. The value
of RecGap shows the degree of favorable treatment toward (m)ales or (f)emales. Highest values are shown in bold.
Statistically significant differences between the results of female and male are shown with † symbol. Score Dist.
columns shows the metric score distributions across males and females. The value of CompFct shows the effect of
compounding imbalances in data. The population distribution to calculate CompFct is 𝐵 = [0.779, 0.221].

Model Scenario All M/F RecGap Score Dist. (M/F) CompFct

POP Standard .046 .045/.049 .004 (f) 76.2/23.8 .001
Resampled .045 .044/.051 .007 (f) † 75.1/24.9 .003

ItemKNN Standard .301 .313/.259 .054 (m) † 81.0/19.0 .004
Resampled .292 .304/.250 .054 (m) † 81.1/18.9 .005

BPR Standard .127 .129/.117 .012 (m) † 79.6/20.4 .001
Resampled .123 .124/.116 .008 (m) 79.0/21.0 .001

ALS Standard .241 .251/.205 .046 (m) † 81.2/18.8 .005
Resampled .238 .248/.204 .044 (m) † 81.1/18.9 .005

SLIM Standard .364 .378/.315 .063 (m) † 80.8/19.2 .004
Resampled .359 .372/.312 .060 (m) † 80.8/19.2 .004

MultiVAE Standard .192 .197/.173 .024 (m) † 80.0/20.0 .002
Resampled .183 .188/.166 .023 (m) † 80.0/20.0 .002

6.1. Performance evaluation results

Table 3 shows the evaluation results of experiments, averaged over all users, for the two experiment scenarios, namely Standard
nd Resampled. We conduct significance tests (see Section 5.6) between Standard and Resampled for the results of each algorithm
nd metric.

Overall, SLIM shows the best performance in terms of the accuracy-based metrics (NDCG and recall) as well as for diversity
cross the two experiment scenarios. For all the pairwise comparisons, the difference between the scores achieved by SLIM in
omparison with the other models is statistically significant. The lowest difference is observed between SLIM and ItemKNN in the
esampled scenario for diversity (𝑝 = .0002). On the other hand, ItemKNN has the highest score in terms of coverage. Except for the
omparisons with SLIM and BPR (in both the Resampled and the Standard scenarios), all the other pairwise comparisons between
temKNN and the other models show statistically significant differences. As expected, the non-personalized approach (POP) shows

he lowest performance on the accuracy-based metrics and a value of 0.0 on coverage, as POP recommends the same set of items to
ll users.19 Matrix factorization approaches (ALS and BPR) perform generally inferior than the memory-based ItemKNN in terms of
he accuracy-based metrics, while BPR has a higher diversity in comparison with ItemKNN. Finally, MultiVAE generally performs
eaker especially on the accuracy-based metrics. This observation is in contrast to the results reported in previous studies on smaller
atasets (Dacrema, Boglio, Cremonesi, & Jannach, 2019). We suspect that the lower performance of MultiVAE is due to the large
umber of items in our datasets, which makes it harder for the algorithm to provide effective distributions of output predictions.
e consider further analysis of this behavior of MultiVAE as future work.
Comparing the results of Standard with the corresponding ones of Resampled, we observe an overall decrease in performance, while

n the majority of the cases no significant differences are observed. The cases where debiasing significantly harms the performance
re for ItemKNN on all metrics, MultiVAE on NDCG and recall, and ALS on diversity and coverage.20

In the rest of this section, we study the results of fairness and compounding factors on these algorithms.

.2. Fairness gap in recommender systems

In this section, we first discuss the evaluation results of RecGap, and then analyze the outcomes of the compounding factor. We
alculate the RecGap metric, as explained in Section 4, on Standard and Resampled by evaluating the test set results separately on
ale and female user groups. Tables 4–7 repeat the overall evaluation results, but also report the results on each user group, as
ell as the calculated RecGap metric. The higher absolute values of RecGap indicate a higher degree of unfairness, while (m) or (f)

ndicates the direction of favored treatment, respectively, wherever it is toward (m)ales or (f)emales. We also report the significance
f differences between the evaluation results related to the group of male versus female, shown by the dagger sign. Highest absolute
alues for each scenario and metric are shown in bold.

As shown, the majority of algorithms show the existence of a significant gap (RecGap) in performances in favor of the male user
roup, in particular on NDCG, recall, and coverage.21 The diversity metric in general shows a very low gap with a slight tendency
oward the female group.

19 In the case of POP, the number of distinct items in all users’ recommendation lists is obviously 10, resulting in a Coverage@10 value of only 10
∼100,000

.
20 Notably, the debiasing results of POP on diversity shows a significant improvement.
21
15

The only exception is POP which shows counter-bias, namely a RecGap value leaned toward female users. This case is discussed later in the section.
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Table 5
Recall@10 results. Details are identical to Table 4.

Model Scenario All M/F RecGap Score Dist. (M/F) CompFct

POP Standard .043 .041/.051 .010 (f) † 74.0/26.0 .006
Resampled .043 .041/.053 .013 (f) † 72.9/27.1 .009

ItemKNN Standard .284 .294/.247 .047 (m) † 80.7/19.3 .004
Resampled .275 .285/.239 .046 (m) † 80.8/19.2 .004

BPR Standard .117 .119/.111 .009 (m) † 79.2/20.8 .001
Resampled .115 .116/.112 .003 (m) 78.4/21.6 .000

ALS Standard .220 .228/.191 .037 (m) † 80.8/19.2 .004
Resampled .218 .225/.191 .034 (m) † 80.6/19.4 .003

SLIM Standard .340 .351/.299 .052 (m) † 80.5/19.5 .003
Resampled .333 .345/.294 .050 (m) † 80.5/19.5 .003

MultiVAE Standard .175 .178/.161 .018 (m) † 79.6/20.4 .001
Resampled .167 .171/.155 .016 (m) † 79.6/20.4 .001

Table 6
Diversity@10 results. Details are identical to Table 4.

Model Scenario All M/F RecGap Score Dist. (M/F) CompFct

POP Standard .983 .983/.983 .000 (m) 77.9/22.1 .000
Resampled .987 .987/.987 .000 (m) 77.9/22.1 .000

ItemKNN Standard .984 .983/.985 .002 (f) † 77.9/22.1 .000
Resampled .985 .985/.987 .002 (f) † 77.9/22.1 .000

BPR Standard .988 .988/.989 .002 (f) † 77.9/22.1 .000
Resampled .988 .988/.990 .002 (f) † 77.9/22.1 .000

ALS Standard .979 .979/.980 .002 (f) † 77.9/22.1 .000
Resampled .978 .977/.980 .003 (f) † 77.8/22.2 .000

SLIM Standard .991 .991/.991 .000 (f) 77.9/22.1 .000
Resampled .990 .990/.991 .001 (f) † 77.9/22.1 .000

MultiVAE Standard .985 .984/.987 .003 (f)† 77.8/22.2 .000
Resampled .985 .984/.988 .003 (f) † 77.8/22.2 .000

Table 7
Coverage@10 results. Details are identical to Table 4.

Model Scenario All M/F RecGap Score Dist. (M/F) CompFct

POP Standard .000 .000/.000 .000 (m) 79.6/20.4 .001
Resampled .000 .000/.000 .000 (m) 80.1/19.9 .002

ItemKNN Standard .157 .135/.051 .084 (m) † 90.3/9.7 .097
Resampled .128 .111/.046 .065 (m) † 89.5/10.5 .082

BPR Standard .126 .115/.046 .069 (m) † 89.8/10.2 .087
Resampled .124 .113/.047 .066 (m) † 89.4/10.6 .079

ALS Standard .055 .052/.028 .024 (m) † 86.6/13.4 .041
Resampled .052 .049/.028 .021 (m) † 85.9/14.1 .034

SLIM Standard .115 .100/.045 .056 (m) † 88.8/11.2 .069
Resampled .110 .096/.044 .052 (m) † 88.6/11.4 .066

MultiVAE Standard .046 .041/.016 .026 (m) † 90.4/9.6 .098
Resampled .048 .044/.015 .030 (m) † 91.4/8.6 .120

Across the algorithms, SLIM has the highest degree of unfairness on the accuracy-based metrics. This is particularly concerning
s SLIM performs the best across all algorithms, making it a strong candidate for a potential RS when not taking into account
he fairness measure. In fact, we can even observe an inverse relationship between the accuracy-based and fairness metric, namely
ecGap becomes larger for the better performing algorithms such as ItemKNN and SLIM, while it decreases for the algorithms that

perform worse in terms of accuracy, reaching the minimum with BPR and POP.
Looking at the effect of the debiasing method, we observe that RecGap only slightly decreases on Resampled in comparison with

Standard on NDCG, recall, and coverage. This decrease, while marginal, is still valuable considering the fact that the debiasing
method does not deteriorate the performance of the majority of the algorithms, such as SLIM, ALS, and BPR. These results indicates
the need for further studying other algorithmic debiasing methods on this dataset, which we consider as a future direction.

We now inspect the relationship between the results of a performance measure, NDCG, with its corresponding RecGap. Fig. 4a
depicts the NDCG@10 and its RecGap for different recommendation algorithms, evaluated on the LFM-2b-DemoBiasSub dataset. The
16

arker mark for each recommendation algorithm indicates the result of the Standard scenario, and the lighter mark, the ones in the
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Fig. 4. Performance (NDCG@10) versus unfairness (RecGap corresponding to NDCG@10) of different recommendation algorithms on LFM-2b-DemoBiasSub and
FM-1b-DemoBiasSub datasets. The experiments and results related to LFM-1b-DemoBiasSub are explained in Appendix B. For each recommendation algorithm, the
arker and lighter marks represent experiments on the Standard and Resampled scenarios, respectively. Linear fit corresponds to the Standard scenario.

esampled scenario. The dashed line shows the linear fit over the results of Standard, indicating the correlation between NDCG@10
nd RecGap. As shown, the performance metric and RecGap highly correlate, such that the algorithms with higher NDCG also
how higher unfairness. In other words, the recommendation algorithm achieve better performances by more strongly improving
he majority group, and hence increasing the gap. Our results highlight the importance of studying fairness of recommendation
lgorithms in parallel and side-by-side with their performances.

For completeness, we also report the results of the same experiments on LFM-1b-DemoBiasSub (see Appendix B for details). As
hown, the same pattern of correlation can be observed on this dataset. However, since the NDCG@10 results of the algorithms
n LFM-1b-DemoBiasSub are consistently lower than the corresponding ones in LFM-2b-DemoBiasSub, the corresponding correlation

coefficient is relatively smaller.
As for the results of the compounding factor, namely the metric scores distributions and the corresponding CompFct , they are

rovided in the last two columns of Tables 4–7, respectively. These results provide a complementary view on unfairness in RSs by
uantifying in what extent the data/population bias is intensified by model bias.

The distribution of male and female users in the population distribution is 𝐵 = [0.779, 0.221]. Based on this population distribution,
f the value of male in a metric gain distribution becomes higher than 77.9%, the corresponding model has compounded the
opulation bias toward the male group, which is accordingly reflected in CompFct . Highest absolute values of CompFct across each
lgorithm, metric, and dataset are shown in bold. As expected, the majority of algorithms (with the exception of POP) compound the
xisting data bias in the final results. Similar to RecGap, the debiasing approach generally decreases the absolute values of CompFct
except in POP and ItemKNN), while such decreases are marginal. These results highlight how the existence of unfairness in RS
odels amplify the underlying biases in data, and motivate future work for addressing this issue.

Extending the previous description of results, we analyze the differences between the recommendation algorithms in terms of
he RecGap measure, and provide possible explanations for these differences. POP expectedly does not perform well because it
nly considers popular items and ignores the subtleties of personalized recommendation algorithms. Our results imply that female
sers, on average, consume slightly more popular tracks compared to male users, which is inline with previous findings (Schedl,
auger et al., 2015). One particular observation about POP is that RecGap results in the Resampled scenario slightly increases, while
ecreasing in other algorithms. We argue that the cause of this is due to the increase in popularity of the items listened by female
sers, resulted from the resampling of female users. Such increase eventually leads to slight improvements of POP in terms of
ccuracy metrics (NDCG@10 and Recall@10) for the female group, and consequently a marginal increase in RecGap toward female.

For the algorithms that create personalized models, the observations show considerably different characteristics. The most unfair
lgorithms in terms of accuracy are SLIM and ItemKNN (highest RecGap). Both of these algorithms rely on an item–item similarity
easure, computed from the user–item interaction matrix. This suggests the possible effect of item–item similarity measure on

eflecting the preferences of the majority group. We consider further in-depth analyzes of such an effect as a future direction.
Finally, we compare the results of the two investigated matrix factorization approaches, namely ALS and BPR. The two

lgorithms yield substantially different RecGap, where BPR provides the most fair results among the personalized models (though
lso the second poorest in terms of NDCG and Recall), while ALS’s results are much highly unfair. Based on these experiments, we
o not observe any direct effect of matrix factorization method on the fairness of recommendation algorithms.

. Conclusions, limitations, and future work

In this work, we study the effect of population and model/algorithm bias regarding genders in the context of music recommen-
ation. To this end, we first introduce LFM-2b, a novel large-scale real-world dataset of music listening records, which comprises
17
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LFM-2b-DemoBias, a subset containing the listening records of users for which demographic information in terms of gender, age,
and country of origin is available. Using LFM-2b-DemoBias, we explore the group fairness of RS algorithms regarding users’ genders,
according to the discrepancies in the evaluation measures of algorithms. We study different collaborative filtering algorithms
common in the literature, and consider accuracy and beyond-accuracy metrics. In addition, we formulate the compounding factor
for RSs, and study in what extent the RS algorithms intensify the underlying biases in data. Furthermore, we exploit a debiasing
method applied to data, which aims to mitigate the model bias. In the following, we summarize our findings regarding the considered
research questions:

RQ1: Do recommender algorithms of various categories yield different performance scores (in terms of accuracy and beyond-accuracy
metrics) for different user groups with respect to gender? If so, how can these differences be characterized? Our research outcomes show
that most of the collaborative filtering algorithms considered in our study tend to be unfair toward the female group (minority),
in terms of NDCG, recall, and coverage metrics, particularly on shorter recommended lists, i. e., with ranking list up to positions 5
and 10. Furthermore, we notice a (reverse) relation between the accuracy-based and fairness metrics: better performing algorithms,
such as SLIM and ItemKNN, show larger degrees of unfairness compared to the less accurate algorithms such as BPR and POP.

RQ2: What is the effect of a resampling strategy, commonly used as debiasing method, on the performance and fairness of algorithms?
Overall, the studied debiasing approach marginally improves the fairness of recommendation results (by reducing RecGap) across
he various RS algorithms. Applying debiasing only slightly deteriorates the performance of RS algorithms in terms of accuracy and
eyond-accuracy metrics (no significant changes are observed in the majority of cases), which indicates the benefit of using the
ebiasing method.
RQ3: Do RS algorithms compound data bias? If so, how can this be characterized? The algorithms that lead to unfair results in

Ss also compound the bias in data. In such cases, the distributions of final gains of the algorithms are even more biased than the
istribution of genders in data. We observe that this compounding of imbalances is particularly high for ALS and ItemKNN on the

accuracy-based metrics, and for MultiVAE on coverage.
Our findings translate to reusable insights for the music information retrieval (MIR) and music recommender systems (MRS)

communities. First, based on our experimental results, we believe that developing, refining, and adopting debiasing strategies is
urgently needed for MIR and MRS tasks that involve personalization, to account not only for differences in performance related
to gender – which is shown in this paper – but also for other user- and data-specific biases (e. g., according to age, experience, or
popularity). While there already exist several debiasing approaches, to the best of our knowledge, the vast majority of them still lack
validation and adoption in the MIR and MRS communities. Second, when conducting evaluation experiments to assess performances
of (newly proposed) algorithms, which is still the focus of the (technically oriented) MIR and MRS communities, results should be
reported for different user groups. While this is commonly done in MIR and MRS research that explicitly aims at comparing different
group-specific characteristics, it is often neglected in more technically driven work. This typically requires adapting the experimental
setup, making it vital for MIR and MRS researchers to internalize the corresponding awareness of gender (and other) biases during
experimental design. Similarly, user studies conducted in MIR and MRS should critically reflect on potential effects of unequal gender
distribution among participants. Even if studies presented in MIR and MRS literature mention the gender distribution of subjects,
often the results are not discussed under this perspective, in particular the extent to which differences in results are possibly caused
by gender-related aspects. Finally, from a user perspective, methods to increase transparency of recommendation algorithms and
explainability of recommendations should be more widely adopted, not only to improve trust in the MRS (which is the motivation
commonly mentioned by system providers), but also to raise awareness of potential fairness problems, e. g., through explanations
of the form ‘‘You are being recommended song 𝑋 because other female listeners like it’’.

As for limitations of the current study, we acknowledge that the assumption of gender as a binary construct is an over-
simplification, and does not reflect the complexity of fairness and bias regarding gender. This decision, however, enables us to
take practical steps. In addition, we have centered our study on the evaluation of gender-related bias, while other demographics
such as age and country of origin, are not considered. Furthermore, the used datasets contain logs of user interactions with the
online platform Last.fm. As such, they can only capture the listening events of people using the platform. All contained information
(demographics and listening records) is self-reported by the users, which may be prone to errors and may not necessarily reflect the
truth.

These limitations will be addressed in future work by extending our framework to a non-binary setting, which enables the study
of the mentioned cases. In addition, we will consider datasets that originate from other platforms, within and beyond the music
domain. Finally, a natural future direction of this work is the study of additional algorithmic debiasing methods. In particular, we
will explore how/whether fairness of RS algorithms can be achieved without negatively impacting their average performance.
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Table A.8
Overall results of accuracy (NDCG and recall) and beyond-accuracy (diversity and coverage) metrics; on the
different evaluated models: POP, ItemKNN, BPR, ALS, SLIM, and MultiVAE; considering two settings: Standard
(Standard) and Resampled (Resampled); for all users together (female and male). Statistically significant differences
between the Standard and Resampled scenarios for each model and metric are indicated with an asterisk (∗) on
the highest value between Standard and Resampled. Highest values for each metric are shown in bold.

Model Scenario NDCG@5 Recall@5 Diversity@5 Coverage@5

POP Standard .051 .048 .968 .000
Resampled .051 .050 .994∗ .000

ItemKNN Standard .332 .316∗ .984 .093∗
Resampled .323 .306 .986∗ .076

BPR Standard .142 .131 .984 .081
Resampled .136 .127 .985∗ .079

ALS Standard .275 .256 .978∗ .038∗

Resampled .272 .253 .975 .036

SLIM Standard .405 .382 .992 .069∗

Resampled .401 .378 .992 .067

MultiVAE Standard .219∗ .203∗ .983 .030
Resampled .209 .193 .984 .031

Table A.9
Overall results of accuracy (NDCG and recall) and beyond-accuracy (diversity and coverage) metrics; on the
different evaluated models: POP, ItemKNN, BPR, ALS, SLIM, and MultiVAE; considering two settings: Standard
(Standard) and Resampled (Resampled); for all users together (female and male). Statistically significant differences
between the Standard and Resampled scenarios for each model and metric are indicated with an asterisk (∗) on
the highest value between Standard and Resampled. Highest values for each metric are shown in bold.

Model Scenario NDCG@50 Recall@50 Diversity@50 Coverage@50

POP Standard .041 .051 .987∗ .001
Resampled .041 .052 .986 .001

ItemKNN Standard .273∗ .289∗ .986∗ .454∗
Resampled .263 .275 .987 .387

BPR Standard .119 .139 .992 .308
Resampled .115 .134 .992 .298

ALS Standard .206 .218 .986∗ .129∗

Resampled .203 .214 .985 .124

SLIM Standard .319 .331∗ .990 .315∗

Resampled .313 .322 .990 .296

MultiVAE Standard .169 .184 .984 .117
Resampled .163 .181 .985 .127
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Table A.10
NDCG@5 results on the users of the male/female (M/F) groups for the Standard and Resampled scenarios. The value
of RecGap shows the degree of favorable treatment toward (m)ales or (f)emales. Highest values are shown in bold.
Statistically significant differences between the results of female and male are shown with † symbol. Score Dist.
columns shows the metric gain distributions across males and females. The value of CompFct shows the effect of
compounding imbalances in data. The population distribution to calculate CompFct is 𝐵 = [0.779, 0.221].

Model Scenario NDCG@5

All M/F RecGap Score Dist. CompFct

POP Standard .051 .051/.052 .001 (f) 77.4/22.6 .000
Resampled .051 .050/.055 .006 (f) 76.0/24.0 .001

ItemKNN Standard .332 .346/.284 .063 (m) † 81.1/18.9 .005
Resampled .323 .337/.274 .063 (m) † 81.2/18.8 .005

BPR Standard .142 .145/.129 .016 (m) † 79.8/20.2 .002
Resampled .136 .139/.127 .012 (m) 79.4/20.6 .001

ALS Standard .275 .288/.230 .058 (m) † 81.5/18.5 .006
Resampled .272 .284/.228 .056 (m) † 81.4/18.6 .006

SLIM Standard .405 .421/.347 .073 (m) † 81.0/19.0 .004
Resampled .401 .416/.345 .071 (m) † 80.9/19.1 .004

MultiVAE Standard .219 .225/.195 .031 (m) † 80.3/19.7 .003
Resampled .209 .215/.186 .029 (m) † 80.3/19.7 .003

Table A.11
Recall@5 results. Details are identical to Table A.10.

Model Scenario Recall@5

All M/F RecGap Score Dist. CompFct

POP Standard .048 .047/.052 .005 (f) 76.1/23.9 .001
Resampled .050 .047/.058 .010 (f) † 74.3/25.7 .005

ItemKNN Standard .316 .329/.269 .060 (m) † 81.2/18.8 .005
Resampled .306 .319/.261 .058 (m) † 81.2/18.8 .005

BPR Standard .131 .135/.120 .014 (m) † 79.8/20.2 .002
Resampled .127 .129/.120 .009 (m) 79.1/20.9 .001

ALS Standard .256 .268/.214 .053 (m) † 81.5/18.5 .006
Resampled .253 .265/.213 .052 (m) † 81.4/18.6 .006

SLIM Standard .382 .397/.328 .070 (m) † 81.0/19.0 .004
Resampled .378 .393/.325 .068 (m) † 81.0/19.0 .004

MultiVAE Standard .203 .209/.181 .029 (m) † 80.3/19.7 .003
Resampled .193 .199/.173 .025 (m) † 80.1/19.9 .002

Table A.12
Diversity@5 results. Details are identical to Table A.10.

Model Scenario Diversity@5

All M/F RecGap Score Dist. CompFct

POP Standard .968 .968/.968 .000 (m) 77.9/22.1 .000
Resampled .994 .994/.993 .001 (m) † 77.9/22.1 .000

ItemKNN Standard .984 .983/.985 .001 (f) 77.9/22.1 .000
Resampled .986 .985/.987 .001 (f) † 77.9/22.1 .000

BPR Standard .984 .984/.985 .001 (f) 77.9/22.1 .000
Resampled .985 .985/.987 .002 (f) † 77.9/22.1 .000

ALS Standard .978 .977/.979 .001 (f) 77.9/22.1 .000
Resampled .975 .975/.977 .002 (f) † 77.9/22.1 .000

SLIM Standard .992 .992/.992 .000 (f) 77.9/22.1 .000
Resampled .992 .992/.992 .000 (f) 77.9/22.1 .000

MultiVAE Standard .983 .983/.985 .002 (f) † 77.9/22.1 .000
Resampled .984 .983/.986 .003 (f) † 77.8/22.2 .000
20
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Table A.13
Coverage@5 results. Details are identical to Table A.10.

Model Scenario Coverage@5

All M/F RecGap Score Dist. CompFct

POP Standard .000 .000/.000 .000 (m) 80.4/19.6 .003
Resampled .000 .000/.000 .000 (m) 79.9/20.1 .002

ItemKNN Standard .093 .079/.029 .050 (m) † 90.6/9.4 .103
Resampled .076 .065/.026 .039 (m) † 89.7/10.3 .086

BPR Standard .081 .072/.026 .046 (m) † 90.6/9.4 .103
Resampled .079 .071/.027 .043 (m) † 90.1/9.9 .093

ALS Standard .038 .035/.018 .018 (m) † 87.5/12.5 .051
Resampled .036 .033/.018 .015 (m) † 86.8/13.2 .042

SLIM Standard .069 .060/.025 .034 (m) † 89.2/10.8 .076
Resampled .067 .058/.025 .033 (m) † 89.0/11.0 .073

MultiVAE Standard .030 .027/.009 .017 (m) † 90.9/9.1 .110
Resampled .031 .028/.009 .019 (m) † 91.7/8.3 .128

Table A.14
NDCG@50 results on the users of the male/female (M/F) groups for the Standard and Resampled scenarios. The value
of RecGap shows the degree of favorable treatment toward (m)ales or (f)emales. Highest values are shown in bold.
Statistically significant differences between the results of female and male are shown with † symbol. Score Dist.
columns shows the metric gain distributions across males and females. The value of CompFct shows the effect of
compounding imbalances in data. The population distribution to calculate CompFct is 𝐵 = [0.779, 0.221].

Model Scenario NDCG@50

All M/F RecGap Score Dist. CompFct

POP Standard .041 .040/.047 .008 (f) 74.7/25.3 .004
Resampled .041 .039/.049 .010 (f) † 73.7/26.3 .007

ItemKNN Standard .273 .279/.252 .027 (m) † 79.6/20.4 .001
Resampled .263 .269/.241 .027 (m) † 79.7/20.3 .001

BPR Standard .119 .118/.122 .004 (f) † 77.3/22.7 .000
Resampled .115 .114/.121 .007 (f) † 76.8/23.2 .000

ALS Standard .206 .209/.192 .018 (m) † 79.4/20.6 .001
Resampled .203 .206/.192 .014 (m) † 79.1/20.9 .001

SLIM Standard .319 .325/.297 .028 (m) † 79.4/20.6 .001
Resampled .313 .318/.293 .026 (m) † 79.3/20.7 .001

MultiVAE Standard .169 .169/.167 .002 (m) 78.1/21.9 .000
Resampled .163 .164/.161 .003 (m) 78.2/21.8 .000

Table A.15
Recall@50 results. Details are identical to Table A.14.

Model Scenario Recall@50

All M/F RecGap Score Dist. CompFct

POP Standard .051 .047/.065 .018 (f) † 71.8/28.2 .014
Resampled .052 .047/.068 .021 (f) † 71.0/29.0 .018

ItemKNN Standard .289 .290/.285 .005 (m) 78.2/21.8 .000
Resampled .275 .277/.269 .008 (m) 78.4/21.6 .000

BPR Standard .139 .134/.155 .021 (f) † 75.3/24.7 .003
Resampled .134 .129/.154 .025 (f) † 74.7/25.3 .004

ALS Standard .218 .218/.220 .002 (f) 77.7/22.3 .000
Resampled .214 .212/.221 .009 (f) 77.2/22.8 .000

SLIM Standard .331 .332/.330 .002 (m) 78.0/22.0 .000
Resampled .322 .322/.321 .000 (m) 77.9/22.1 .000

MultiVAE Standard .184 .181/.198 .017 (f) 76.3/23.7 .001
Resampled .181 .177/.195 .018 (f) 76.2/23.8 .001
21
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Table A.16
Diversity@50 results. Details are identical to Table A.14.

Model Scenario Diversity@50

All M/F RecGap Score Dist. CompFct

POP Standard .987 .987/.987 .000 (m) 77.9/22.1 .000
Resampled .986 .986/.986 .000 (m) 77.9/22.1 .000

ItemKNN Standard .986 .986/.988 .002 (f) † 77.9/22.1 .000
Resampled .987 .987/.989 .002 (f) † 77.9/22.1 .000

BPR Standard .992 .991/.993 .002 (f) † 77.9/22.1 .000
Resampled .992 .991/.993 .002 (f) † 77.9/22.1 .000

ALS Standard .986 .985/.988 .002 (f) † 77.8/22.2 .000
Resampled .985 .984/.988 .003 (f) † 77.8/22.2 .000

SLIM Standard .990 .990/.991 .002 (f) † 77.9/22.1 .000
Resampled .990 .990/.992 .002 (f) † 77.9/22.1 .000

MultiVAE Standard .984 .983/.987 .003 (f) † 77.8/22.2 .000
Resampled .985 .984/.987 .003 (f) † 77.8/22.2 .000

Table A.17
Coverage@50 results. Details are identical to Table A.14.

Model Scenario Coverage@50

All M/F RecGap Score Dist. CompFct

POP Standard .001 .001/.001 .000 (m) 79.6/20.4 .001
Resampled .001 .001/.001 .000 (m) 80.0/20.0 .002

ItemKNN Standard .454 .406/.165 .241 (m) † 89.6/10.4 .084
Resampled .387 .346/.150 .196 (m) † 89.1/10.9 .074

BPR Standard .308 .292/.148 .145 (m) † 87.5/12.5 .051
Resampled .298 .282/.149 .133 (m) † 87.0/13.0 .045

ALS Standard .129 .123/.073 .050 (m) † 85.6/14.4 .031
Resampled .124 .117/.072 .045 (m) † 85.1/14.9 .026

SLIM Standard .315 .286/.143 .142 (m) † 87.5/12.5 .051
Resampled .296 .268/.139 .130 (m) † 87.2/12.8 .047

MultiVAE Standard .117 .109/.047 .062 (m) † 89.1/10.9 .074
Resampled .127 .120/.046 .074 (m) † 90.2/9.8 .094
22
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Table B.18
Statistics of the LFM-1b-DemoBiasSub dataset. Number of Users, Tracks, Artists, and LEs are reported across F(emale)
and M(ale) separately and also together (All). Mean and standard deviation (indicated after ±) of the interactions of
users with tracks, artists, and listening events are indicated in the last three columns, respectively.

Gender Users Tracks Artists LEs Tracks/User Artists/User LEs/User

All 50,578 99,792 43,764 27,927,919 81 ± 82 71 ± 68 552 ± 809
F 14,143 82,637 38,610 7,093,595 69 ± 64 60 ± 55 502 ± 650
M 36,435 99,640 43,717 20,834,324 86 ± 87 75 ± 72 572 ± 862

Table B.19
Overall LFM-1b results of accuracy (NDCG and recall) and beyond-accuracy (diversity and coverage) metrics; on
the different evaluated models: POP, ItemKNN, BPR, ALS, SLIM, and MultiVAE; considering two scenarios:
Standard (Standard) and Resampled (Resampled); for all users together (female and male). Statistically significant
differences between the Standard and Resampled scenarios for each model and metric are indicated with an asterisk
(∗) on the highest value between Standard and Resampled. Highest values for each metric are shown in bold.

Model Scenario NDCG@10 Recall@10 Diversity@10 Coverage@10

POP Standard .030 .029 1.00 .000
Resampled .030 .029 .999 .000

ItemKNN Standard .288 .269 .979∗ .241∗
Resampled .285 .265 .981 .197

BPR Standard .113∗ .105∗ .983∗ .144∗

Resampled .107 .101 .985 .155

ALS Standard .206 .184 .981∗ .054∗

Resampled .207 .184 .980 .053

SLIM Standard .327 .302 .986 .137∗

Resampled .325 .299 .986 .133

MultiVAE Standard .171 .157 .984∗ .077∗

Resampled .167 .154 .983 .072

Table B.20
LFM-1b NDCG@10 results on the users of the male/female (M/F) groups for the Standard and Resampled scenarios.
The value of RecGap shows the degree of favorable treatment toward (m)ales or (f)emales. Highest values are
shown in bold. Statistically significant differences between the results of female and male are shown with
† symbol. Score Dist. columns shows the metric gain distributions across males and females. The value of
CompFct shows the effect of compounding imbalances in data. The population distribution to calculate CompFct
is 𝐵 = [0.720, 0.280].

Model Scenario NDCG@10

All M/F RecGap Score Dist. CompFct

POP Standard .030 .030/.030 .001 (f) 71.7/28.3 .000
Resampled .030 .028/.032 .004 (f) † 69.4/30.6 .002

ItemKNN Standard .288 .298/.264 .034 (m) † 74.4/25.6 .002
Resampled .285 .294/.261 .034 (m) † 74.4/25.6 .002

BPR Standard .113 .114/.110 .003 (m) 72.6/27.4 .000
Resampled .107 .107/.105 .002 (m) 72.5/27.5 .000

ALS Standard .206 .213/.189 .024 (m) † 74.3/25.7 .002
Resampled .207 .213/.192 .021 (m) † 74.0/26.0 .001

SLIM Standard .327 .337/.302 .035 (m) † 74.2/25.8 .002
Resampled .325 .334/.300 .034 (m) † 74.1/25.9 .002

MultiVAE Standard .171 .173/.164 .010 (m) † 73.2/26.8 .000
Resampled .167 .170/.162 .008 (m) † 73.0/27.0 .000

Appendix B. LFM-1b evaluation results for NDCG, recall, diversity, and coverage

In this appendix we report the results of the experiments on the LFM-1b dataset. We follow a similar data processing procedures
as detailed in Section 5.1. We only consider user-track interactions with a playcount (PC) > 1, only tracks listened to by at least 5
ifferent users and users that listened to at least 5 different tracks. However, we do not impose any constraints on the recency of
he LEs. Furthermore, we also randomly sample 100,000 tracks. We refer to this final subset as LFM-1b-DemoBiasSub. The statistics
or the datasets are reported in Table B.18.

We follow the same exact experiment procedures as in Sections 5.2–5.7 (see Table B.19). The results are reported for K = 10 in
ables B.20–B.23.
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Table B.21
LFM-1b Recall@10 results. Details are identical to Table B.20.

Model Scenario Recall@10

All M/F RecGap Score Dist. CompFct

POP Standard .029 .029/.031 .002 (f) 70.8/29.2 .001
Resampled .029 .027/.034 .006 (f) † 67.7/32.3 .006

ItemKNN Standard .269 .276/.248 .028 (m) † 74.1/25.9 .002
Resampled .265 .273/.245 .028 (m) † 74.1/25.9 .002

BPR Standard .105 .105/.105 .000 (f) 72.0/28.0 .000
Resampled .101 .101/.101 .000 (f) 72.0/28.0 .000

ALS Standard .184 .188/.171 .018 (m) † 74.0/26.0 .001
Resampled .184 .188/.174 .014 (m) † 73.6/26.4 .001

SLIM Standard .302 .310/.281 .029 (m) † 74.0/26.0 .001
Resampled .299 .307/.279 .028 (m) † 73.9/26.1 .001

MultiVAE Standard .157 .159/.152 .007 (m) † 73.0/27.0 .000
Resampled .154 .155/.150 .005 (m) † 72.7/27.3 .000

Table B.22
LFM-1b Diversity@10 results. Details are identical to Table B.20.

Model Scenario Diversity@10

All M/F RecGap Score Dist. CompFct

POP Standard 1.00 1.00/1.00 .000 (f) 72.0/28.0 .000
Resampled .999 .999/.999 .000 (f) 72.0/28.0 .000

ItemKNN Standard .979 .979/.978 .001 (m) 72.1/27.9 .000
Resampled .981 .981/.980 .000 (m) 72.0/28.0 .000

BPR Standard .983 .983/.983 .001 (f) 72.0/28.0 .000
Resampled .985 .984/.985 .001 (f) † 72.0/28.0 .000

ALS Standard .981 .980/.981 .001 (f) † 72.0/28.0 .000
Resampled .980 .979/.981 .002 (f) † 72.0/28.0 .000

SLIM Standard .986 .986/.986 .001 (m) † 72.0/28.0 .000
Resampled .986 .986/.986 .000 (m) 72.0/28.0 .000

MultiVAE Standard .984 .983/.984 .001 (f) † 72.0/28.0 .000
Resampled .983 .983/.984 .002 (f) † 72.0/28.0 .000

Table B.23
LFM-1b Coverage@10 results. Details are identical to Table B.20.

Model Scenario Coverage@10

All M/F RecGap Score Dist. CompFct

POP Standard .000 .000/.000 .000 (m) 73.2/26.8 .000
Resampled .000 .000/.000 .000 (m) 73.5/26.5 .001

ItemKNN Standard .241 .206/.103 .103 (m) † 83.8/16.2 .063
Resampled .197 .170/.091 .079 (m) † 82.8/17.2 .051

BPR Standard .144 .133/.080 .054 (m) † 81.2/18.8 .035
Resampled .155 .142/.087 .055 (m) † 80.8/19.2 .032

ALS Standard .054 .051/.040 .011 (m) † 76.8/23.2 .009
Resampled .053 .050/.040 .010 (m) † 76.4/23.6 .007

SLIM Standard .137 .121/.072 .048 (m) † 81.1/18.9 .035
Resampled .133 .117/.071 .046 (m) † 81.0/19.0 .034

MultiVAE Standard .077 .069/.036 .033 (m) † 83.2/16.8 .056
Resampled .072 .065/.034 .031 (m) † 83.1/16.9 .055
24
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