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ABSTRACT
When we appreciate a piece of music, it is most naturally because of
its content, including rhythmic, tonal, and timbral elements as well
as its lyrics and semantics. This suggests that the human affinity
for music is inherently content-driven. This kind of information is,
however, still frequently neglected by mainstream recommendation
models based on collaborative filtering that rely solely on user-
item interactions to recommend items to users. A major reason for
this neglect is the lack of standardized datasets that provide both
collaborative and content information.

The work at hand addresses this shortcoming by introducing
Music4All-Onion, a large-scale, multi-modal music dataset. The
dataset expands the Music4All dataset by including 26 additional
audio, video, and metadata characteristics for 109,269 music pieces.
In addition, it provides a set of 252,984,396 listening records of
119,140 users, extracted from the online music platform Last.fm,
which allows leveraging user-item interactions as well. We orga-
nize distinct item content features in an onion model according to
their semantics, and perform a comprehensive examination of the
impact of different layers of this model (e.g., audio features, user-
generated content, and derivative content) on content-driven music
recommendation, demonstrating how various content features in-
fluence accuracy, novelty, and fairness of music recommendation
systems. In summary, with Music4All-Onion, we seek to bridge the
gap between collaborative filtering music recommender systems
and content-centric music recommendation requirements.
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1 INTRODUCTION AND MOTIVATION
With the spiraling increase of digital content available to users, and
likewise interaction data between users and content items, Recom-
mender Systems (RSs) have become ubiquitous. Compared to other
domains, Music Recommender Systems (MRS) are characterized by
a large item-set size and a high sparsity of user-item interactions,
making them prone to issues such as the cold-start problem and pop-
ularity biases. Those issues are often mitigated with Content-Based
Recommenders (CBRs) that leverage item features, as opposed to
Collaborative Filtering (CF), which relies entirely on user-item in-
teraction data. Music consumption is also characterized by the fact
that human music perception happens at different levels of seman-
tics, and often involves not only the listened audio signal but also
textual or visual input. Additionally, owing to the developments in
Music Information Retrieval (MIR), many techniques [4, 12] allow
the audio-based extraction of features characterizing music items
at different semantic levels. Because of these aspects, MRSs are
particularly apt for research in CBRs [7–10].

One big obstacle to the development of advanced content-based
MRSs is the lack of comprehensive, standardized, and large-scale
datasets, providing features characterizing the items at different se-
mantic levels. Another one is understanding how feature semantics
affect recommendation, which requires a categorization of features
depending on their semantic charge. We address both points in this
paper. First, we present Music4All-Onion, a dataset that enhances
the established Music4All [29] and LFM-2b [30] datasets, by includ-
ing several additional item features. Second, we propose an onion
model to organize item features according to their semantics, thus
helping the interpretation of the impact of item features on the
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Table 1: Publicly available content-centric multi-faceted
datasets: AF=audio features (LL=low-level, HL=high-level)

Resource Modalities Songs

AB Genre [3] AF (HL+LL), genre 1,935,991
ALF-200k [42] AF (HL), lyrics features 226,747
MuMu [23] AF (HL+LL), genre, image, text, 147,295

ratings, product similarities
Music4All [29] AF (HL), genre, tags 109,269
MusiClef [31] AF (HL+LL), genre, mood, tags, 1,355

artist descriptions
MIREX Mood [25] AF (HL+LL), score, lyrics 193
URMP [17] Audio, video 44

Music4All-Onion AF (HL+LL), lyrics embeddings, 109,269
genre, tags, video embeddings

recommendation task. We benchmark, in terms of accuracy and
beyond-accuracy metrics, these newly categorized features by com-
paring the performance of CBRs fueled by these features among
each other and with pure CF models. Our analysis shows that con-
tent features improve recommendation accuracy with respect to
pure CF, and that multi-modal CBRs, leveraging several features
simultaneously, achieve the best performance. We also show that
optimal selection of content features depends on the objective of
the MRS, e.g., maximizing accuracy, diversity, or fairness.

Our contribution is, therefore, three-fold: First, we introduce
Music4All-Onion, a large-scale multi-faceted dataset for music rec-
ommendation. Second, we propose an onion model for categorizing
features according to their semantics. Based on these two contribu-
tions, we show howmulti-modality improves recommendation, and
how different features can be leveraged to optimize for accuracy and
beyond-accuracy metrics. We provide the Music4All-Onion dataset
and accompanying source codes for the conducted experiments at
http://www.cp.jku.at/datasets/Music4All-Onion.

2 RELATED RESOURCES
While there are many datasets in the fields of RSs and MIR, only
a few combine multiple modalities: those publicly available vastly
differ in terms of size and covered modalities (see Table 1).

The AcousticBrainz (AB) Genre dataset [3] provides audio fea-
tures (via AcousticBrainz) and genre information for up to 1,935,991
songs. Genre labels are collected from four different sources, where
genres are organized hierarchically into main genres and sub-
genres. The ALF-200k dataset [42] combines acoustic and lyrics fea-
tures, resulting in 176 high-level (HL) features for each of the 226,747
included tracks. The Multimodal Music dataset (MuMu) [23, 24]
is based on the Million Song Dataset (MSD) [1] and the Amazon
Reviews dataset [20] and encompasses 147,295 songs. The MuMu
dataset combines information on purchases of albums (recovered
from Amazon) with information on individual tracks, hence pro-
viding audio features (extracted from AcousticBrainz), multi-label
genre annotations, album reviews, average rating per album, sell-
ing rank, similar products, and URL of the cover image of the al-
bum. The proposed Music4All-Onion dataset extends the Music4All
dataset, which provides 109,269 songs and high-level acoustic fea-
tures (extracted from Spotify), genres, and Last.fm tags. The Musi-
Clef dataset [31] contains 1,355 popular music songs and provides
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Figure 1: Onion model of music features.

high- and low-level (LL) audio features (e.g., MFCCs and block-level
features), manually annotated genre and mood labels by domain
experts, Last.fm tags, and textual artist descriptions crawled from
various websites. The MIREX mood dataset [25] is based on the
mood tags used in the MIREX mood classification task [14]. Songs
annotated with these tags are retrieved from AllMusic and extended
with mood tags, lyrics, and MIDI data for each of the 193 songs. The
University of Rochester Multimodal Music Performance (URMP)
dataset [17] provides 44 multi-instrument classical music pieces,
where for each track, the audio for the individual tracks, the mu-
sical score in MIDI format, the audio and video recording of the
assembled mixture, and frame and note-level pitches are contained.

Music4All-Onion both interlinks and substantially extends the
established Music4All [29] and LFM-2b [30] datasets. In contrast
to existing datasets, Music4All-Onion is large-scale and provides
features extracted from audio, video, and metadata for 109,269
music tracks. In addition, it includes 252,984,396 listening records of
119,140 users of Last.fm. This combination of rich content features
across multiple modalities and extensive collaborative information
(listening records) makes it a unique resource for RSs research.

3 ONION MODEL OF MUSIC FEATURES
We present an onion model (as depicted in Figure 1) proposed
by Deldjoo et al. [10] to categorize music content features in layers
that reflect a transition from highly objective features with a low se-
mantic charge (the inner layers) to more subjective and semantically
meaningful features (the outer layers). The innermost layer corre-
sponds to features extracted from the raw audio signal, commonly
adopting traditional MIR signal processing techniques. Features
in the Embedded Metadata (EMD) layer contain descriptive and
technical metadata such as artist, track, and album name, or lyrics.
Expert-Generated Content (EGC) refers to attributes assigned by
or filtered with information from users with training or experi-
ence in the music domain, while User-Generated Content (UGC)
encompasses information attached to items by general users. The
Derivative Content (DC) layer refers to works created in relation
to the original.

4340

http://www.cp.jku.at/datasets/Music4All-Onion


Music4All-Onion — A Large-Scale Multi-Faceted Content-Centric Music Recommendation Dataset CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 2: Features introduced inMusic4All-Onion, categorized
according to the layers of the onion model.

Layer Features

Audio Acoustic (Short-term, Block-level)

EMD Lyrics (preprocessed, tf-idf, word2vec, emotions)

EGC Genres (tf-idf)

UGC Tags (dictionary with Last-FM API weights, tf-idf)

DC Video (VGG19, Incp3, Resnet)

4 THE MUSIC4ALL-ONION DATASET
In this section, we describe the features provided by Music4All-
Onion, categorized according to the onion model introduced in
Section 3. These are summarized in Table 2. We also describe the
additional set of listening events obtained by matching Music4All-
Onion with the popular LFM-2b dataset [30].
4.1 Audio
Low-level (LL) and high-level (HL) features are extracted from the
audio signal. We divide these features into short-term and block-
level features, depending on the length of the sequence considered.
4.1.1 Short-term features. Short-term features are extracted at
frame-level and subsequently aggregated to obtain a feature vector
per instance. The 13 Mel Frequency Cepstral Coefficients (MFCCs),
encoding timbre information, are extracted with kaldi [26], and
aggregated in three different ways: as statistical summarization
by concatenating the mean and flattened covariance matrix as de-
scribed in [16], as Bag of Audio Words (BoAW) computed with
openXBOW [33], and as i-vectors [11] of three different dimension-
alities. Using openSMILE [12], we also extract pitch- and emotion-
related [36] features. Pitch features are aggregated as BoAWs, while
emotion-related features are aggregated using the statistical aggre-
gators of openSMILE, as well as with BoAWs. We also extract two
large-scale hand-crafted feature sets: ComParE [34] extracted with
openSMILE, which contain 6,373 features computed from MFCCs,
spectral, prosodic, and voice quality descriptors through statistical
aggregation; and spectral, time-domain, rhythm, and tonal frame
descriptors aggregated via mean and standard deviation, extracted
with Essentia [4].
4.1.2 Block-level features. Compared to short-term features, block-
level features (BLFs) [35] are computed on longer sequences (several
seconds) of spectrograms, and then aggregated using percentiles.
We compute the six features defined in [35], capturing spectral,
harmonic, rhythmic, and tonal music characteristics.
4.2 Embedded Metadata (EMD)
In addition to existing artist, album, and track names, we extract
different representations of song lyrics.
4.2.1 Preprocessed lyrics. We provide a preprocessed version of
the lyrics of Music4All, obtained after lowercasing, removing su-
perfluous white spaces, consecutive newlines, and annotation (e.g.,
[guitar] or [chorus]), duplicating segments (e.g., [3x] or [x2]), trans-
lating lyrics from other languages to English, replacing numbers
with English words, substituting English contractions with spelled-
out forms, removing special characters and stopwords, applying
lemmatization and stemming.

4.2.2 Lyrics embeddings. We provide two vector representations
of the preprocessed lyrics: word2vec and tf-idf. The word2vec
representation is obtained by first mapping each word to its 300-
dimensional pre-trained word2vec embedding [21], and then aver-
aging each component over the set of words. For tf-idf, tf is defined
in terms of absolute word counts while idf is defined as

idf (𝑡) = log
[

1 + 𝑛
1 + df (𝑡)

]
+ 1, (1)

𝑛 being the total number of tracks, and df being the fraction of
lyrics documents (one document for each track) in which the term
appears. The resulting tf-idf vectors are 𝐿2-normalized.
4.2.3 Lyrics emotions. Emotional content is represented by map-
pingwords from the lyrics onto valence, arousal, and dominance val-
ues according to the extendedAffective Norms for EnglishWords [41]
lexicon. Words not present in this lexicon are mapped with the Na-
tional Research Council Canada (NRC) lexicon [22]. In addition, we
compute the polarity compound measure according to the Valence
Aware Dictionary for sEntiment Reasoning (VADER) [15] using
NLTK [2]. The values are aggregated as BoWs.

4.3 Expert-Generated Content (EGC)
The maintainers of the original Music4All dataset infer track genre
by filtering out the tags appearing on the track Last.fm page, by the
genres defined on Every Noise at Once,1 and provide the resulting
genre list per track.We convert those lists into tf-idf representations.
We exclude genres that are associated with only one track. The tf of
a specific genre of a track is defined as one divided by the number
of genres attached to the track, idf is defined in Equation 1.

4.4 User-Generated Content (UGC)
The Music4All dataset comes with lists of track tags crawled from
the Last.fm website. Those give no information on how often each
tag was associated with the track. To fill this gap, we provide
the tags retrieved with the Last.fm API,2 which attaches a weight
(∈ {0, . . . , 100}) to each tag depending on the frequency of its oc-
currence for the track under consideration, i.e., how many users
assigned the tag to the track. We further convert the tags into a
tf-idf representation by first filtering out tags with more than 50
characters (to remove tags consisting of sentences or extracts of
the lyrics) and removing tags appearing in less than 5 tracks (to
remove tags that are only meaningful to a very restricted subset
of users). We then transform the tags for each track into a tf-idf
representation, where tf is defined as the Last.fm tag weight divided
by the sum of all weights of the track and idf as in Equation 1.

4.5 Derivative Content (DC)
Since official music videos frequently feature additional artistic
contributions, such as those of directors or occasionally actors, and
since many YouTube videos do not correspond to the official ones,
but rather are covers or videos created by users of YouTube, we
consider videos of songs uploaded to YouTube to be DC. For 98,877
out of 109,269 tracks, YouTube videos are available; we download
them and extract image frames at the rate of 1Hz. Each frame is then
converted to three different vector representations using pretrained
versions of VGG19 [38], Inception v3 [39], and Resnet [13], and
aggregated to track level using maximum and mean.
1https://everynoise.com/
2https://www.last.fm/api/show/track.getTopTags
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Table 3: Performance of the recommenders in terms of accuracy and beyond-accuracy metrics sorted descendingly on NDCG.
For each metric, the best value is marked in bold, the second-best value in italic, and the worse is underlined.

Model Feature/Aggregation Layer NDCG Recall User Entropy Item Entropy Coverage Novelty

BiVAE TWB Mixed 0.0641 0.0646 0.3800 0.0760 0.0041 -1.5788
BiVAE Video (VGG19) DC 0.0575 0.0604 0.3573 0.1304 0.0517 -1.5723
BiVAE Lyrics (tf-idf) EMD 0.0558 0.0582 0.3836 0.1251 0.0438 -1.5734
BiVAE Audio (i-vec256) Audio 0.0545 0.0555 0.3783 0.0884 0.0434 -1.5769
MostPop — — 0.0537 0.0524 0.3622 0.0000 0.0016 -1.5850
BPR — — 0.0534 0.0515 0.3617 0.0000 0.0017 -1.5850
BiVAE Genres (tf-idf) EGC 0.0501 0.0549 0.3738 0.1865 0.0601 -1.5656
BiVAE tags (tf-idf) UGC 0.0499 0.0536 0.3586 0.1776 0.0526 -1.5671
BiVAE — — 0.0495 0.0557 0.3747 0.1574 0.0468 -1.5694

4.6 LFM-2b Listening Events
While Music4All-Onion provides a plethora of item features, the
LFM-2b dataset [30] provides comprehensive information on the
users. To enable leveraging both user and item features, and to
provide an extra set of listening events, we match the tracks of the
two datasets on their Spotify Uniform Resource Indicator (URI). Of
the 109,269 tracks of Music4All, 56,512 (about 51%) also appear in
LFM-2b. Restricting the listening events of LFM-2b to those tracks
results in 252,984,396 listening events and 50,016,042 unique pairs
of (user, item), corresponding to at least one listening event.

5 BENCHMARKING
We showcase the impact of Music4All-Onion by comparing the
performance of Bilateral Variational Autoencoders (BiVAEs) [40]
leveraging features from different layers of the onion model (i-
vectors of 256 components, tf-idf of lyrics, genres and tags, and
VGG19 representation of videos) to learn the priors of the item VAE.
This CBR is built on VAEs, which have been proven to be successful
for recommendation tasks [18, 19, 37, 40]. Furthermore, we consider
two CF models: BiVAE with Gaussian priors (i.e., not leveraging any
item feature) and matrix factorization with Bayesian Personalized
Ranking (BPR) [27], as well as a non-personalized algorithm rec-
ommending the overall most popular items to all users (MostPop).
In addition to accuracy metrics (NDCG@10 and Recall@10), we
include several beyond-accuracy metrics, defined in [32], that we
briefly describe here. Item- and user-entropy measure how well
relevant recommendations are spread on the set of items and users,
respectively, with higher values of entropy indicating fairer rec-
ommenders [6]. Coverage is the fraction of items in the catalog
appearing at least once in the top-10 recommendations. Novelty
is a measure of how likely the recommender is to make unpop-
ular recommendations. The BiVAE models and BPR are trained
using the library Cornac [28], while for the evaluation we rely on
our implementation of the metrics since Cornac does not provide
beyond-accuracy metrics, and since it does not allow evaluating
the performance of models that are not included in the library, a
feature required for optimization of and comparison with the ag-
gregated model introduced below. The dimensionality of all latent
representations is set to 10. For BiVAE, the encoders consist of a
hidden layer with 20 nodes and tanh activation, and are trained for
100 epochs with a batch size of 128 and a learning rate of 0.001.
The regularization hyperparameter in BPR is set to 0.01 and the

model is trained for 200 iterations. To evaluate the impact of multi-
modality on recommendation, we also consider a late fusion of all
the BiVAE-based models with a generalization of Borda count rank-
aggregation that we name Truncated Weighted Borda (TWB) [5]:
ranking points are assigned to the top-50 items of every individual
model and weighted with 𝐿1-normalized weights. The combination
of weights is optimized on NDCG, performing a grid-search with
weights 𝜔 ∈ {0, 0.2, . . . , 1}.

The set of songs consists of the 79,072 items for which all fea-
tures are available. The corresponding listening events of Music4All
(4.2M) are binarized by assigning 1 to the (user, item) pairs with
listening counts greater than or equal to 2, resulting in 707,284
positive user-item interactions. These are split into a train (60%),
a validation (20%), and a test (20%) set. The weights for TWB are
optimized on the validation set. All reported results refer to the
test set. By inspecting the results in Table 3, the following conclu-
sions can be drawn. On accuracy, the best values of NDCG and
recall are achieved by the aggregated model, with a combination of
weights (𝜔Aud, 𝜔Lyr, 𝜔Gen, 𝜔Tag, 𝜔Vid, 𝜔CF) = (0.2, 0.2, 0, 0.2, 0.4, 0),
indicating apositive impact of multi-modality on music recommen-
dation. The results show a trade-off between accuracy and beyond-
accuracy/fairnessmetrics, indicating that different modalities can
be leveraged depending on the evaluation dimension to be opti-
mized, which can depend on the interests of the various stake-
holders of the MRS. Optimizing consumer-side measures such as
accuracy and user-fairness may result in the selection of TWB or
video features, which negatively impacts provider-centric metrics
(coverage, item-fairness). For a two-sided equitable ecosystem, the
system designer may choose the weights accordingly.
6 CONCLUSIONS
We introduce Music4All-Onion, a large-scale multi-modal dataset
providing 26 content features for 109,269 songs. We also propose an
onion model to organize these features according to their differing
semantic charge. A set of experiments shows that content-based
MRSs should leverage different features, depending on which objec-
tive is to be optimized, and that content-based music recommenders
tend to outperform pure CF algorithms in terms of accuracy, with
multi-modal variants achieving the best performance.
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