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ABSTRACT
Music listening sessions often consist of sequences including re-
peating tracks. Modeling such relistening behavior with models of
human memory has been proven effective in predicting the next
track of a session. However, these models intrinsically lack the ca-
pability of recommending novel tracks that the target user has not
listened to in the past. Collaborative filtering strategies, on the con-
trary, provide novel recommendations by leveraging past collective
behaviors but are often limited in their ability to provide expla-
nations. To narrow this gap, we propose four hybrid algorithms
that integrate collaborative filtering with the cognitive architecture
ACT-R.We compare their performance in terms of accuracy, novelty,
diversity, and popularity bias, to baselines of different types, includ-
ing pure ACT-R, kNN-based, and neural-networks-based approaches.
We show that the proposed algorithms are able to achieve the best
performances in terms of novelty and diversity, and simultaneously
achieve a higher accuracy of recommendation with respect to pure
ACT-Rmodels. Furthermore, we illustrate how the proposed models
can provide explainable recommendations.
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1 INTRODUCTION
Music is often consumed sequentially. Therefore, music recommen-
dation [46, 48] is often formulated as a session completion task:
tracks should be recommended to a user according to their interac-
tions in the recent past, i.e., those within the current session. The
most effective recommender systems (RSs) for sequential recom-
mendation are based on collaborative filtering (CF) [11, 14, 32, 33].
These algorithms provide recommendations according to past col-
lective user behavior. Although effective, the recommendations
provided by CF algorithms are often hard to justify, either due to
the model architecture or the complexity of the data they base their
recommendations on. Another major distinguishing characteristic
of music RSs compared to general RSs is that music listeners often
listen to tracks they already listened to in the past [7, 42, 48]. This
observation served as a basis for translating cognitive architec-
tures, i.e., models of the structure of human mind, to the domain of
RSs, and evaluate their effectiveness in predicting users’ relisten-
ing behaviors. In particular, the memory module of the Adaptive
Control of Thought—Rational (ACT-R) cognitive architecture [6, 44]
has been proven effective in predicting which tracks the user will
relisten to, based on the tracks listened to in the past [40]. However,
despite their effectiveness in modeling user’s relistening behavior,
leveraging these models based on ACT-R for sequential music rec-
ommendation does not allow recommending novel tracks, i.e., tracks
the target user has never interacted with before. To compensate
for these shortcomings, we design four algorithms that integrate
ACT-R with CF. Since each component of the memory module of
ACT-R is designed to model a different aspect of human memory,
the recommendations provided by the proposed algorithms are
explainable. We measure the performance of the proposed RSs in
terms of accuracy, novelty, diversity, and popularity bias of the rec-
ommended tracks since these are all aspects that affect the user’s
satisfaction with the system [16, 48]. Additionally, we show how the
explainability of the proposed algorithms can be advantageous in a
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multistakeholder RS [1], concerning end users, platform providers,
and content producers.

In summary, this work provides the following contributions to
the RS domain: (1) We propose four algorithms that integrate vari-
ous components of the cognitive architecture ACT-R with CF for
sequential recommendation. (2) We provide an extensive analysis
of the performance of these algorithms by performing experiments
on the LFM-2b dataset [45] of Last.fm listening logs. We compare
the performance of the algorithms with well-established baselines,
including algorithms that solely rely on the cognitive architecture
ACT-R, on 𝑘-nearest-neighbors (kNN), and on deep neural networks
(DNNs). Our experiments show that the proposed algorithms in-
crease the novelty and diversity of recommendations compared
to the baselines. Moreover, we find that the hybrid approaches
outperform pure ACT-R models in terms of accuracy. (3) We exem-
plify how the proposed algorithms can be used to explain music
recommendations.

2 BACKGROUND AND RELATEDWORK
In the following, we briefly present work on sequential recom-
mendation and on RSs based on cognitive architectures, thereby
introducing the fundamentals for the proposed algorithms.
2.1 Sequential Recommendation
Some of themost successful sequential RSs leverage the similarity of
the initial segment of the session to be completed to other sessions.
Extensions of these algorithms also introduce temporal reweighting,
i.e. they consider factors that model the position and recency of the
interactions with the items [11, 31, 34, 41]. For instance, Ludewig
et al. [34] reweight the recommendation score as follows: if an item
𝑖 appeared at position 𝑡𝑖 , its relevance as a recommendation for
position 𝑡ref is weighted by a factor given by 𝑤𝑖 = (𝑡ref − 𝑡𝑖 )−𝑑 ,
where 𝑡ref stands for the timestamp of the next track, i.e., the one the
algorithm is aiming to predict. Some effective approaches use DNN
architectures for sequential recommendation [8, 13, 17, 27, 30, 49,
50]. Finally, other works model the sessions by representing them
as graphs, and leverage graph neural networks [5, 12, 38, 50–52].
2.2 Music Recommender Systems
Sequential RSs are particularly relevant in the context of music
recommendation [47, 48] since they address tasks such as next-
track recommendation or automatic playlist continuation. For an
overview of the approaches used for sequential music recommenda-
tion we refer the reader to Quadrana et al. [39]. Additionally, since
providing explanations for the recommendations can positively
impact the users’ trust and engagement, the interest in addressing
explainability in the context of music RSs has been increasing in
the last years; for an overview of the topic we refer the reader to
Afchar et al. [4].
2.3 Cognition-inspired Recommender Systems
Cognition-inspired RSs use models from the domain of cognitive
psychology to create RSs, often using theories of human mem-
ory [26, 28]. Our work focuses on ACT-R [6, 44]. Several studies
leveraged the memory module of ACT-R for tasks such as hashtag
recommendation [19], item recommendation in social tagging sys-
tems [21], next genre prediction [25], next artist prediction [18],
job recommendation [20, 22], or predicting mobile app usages [53].

In particular, Reiter-Haas et al. [40] use ACT-R’s memory module
for completing music streaming sessions. The components of the
module are described in the remainder of this section.
Base-Level Learning (BLL): The BLL component captures the
tendency of human memory of favoring instances that occurred
frequently and recently in the past. Similar to Reiter-Haas et al. [40],
given the timestamp 𝑡ref of the next track in the session, i.e., the one
the algorithm is aiming to predict, and given an item 𝑖 , we define
its BLL activation as 𝐵𝑖 =

∑𝑛
𝑗=1 (𝑡ref − 𝑡𝑖 𝑗 )−𝑑 . The sum extends to

all the 𝑛 past interactions of the user with item 𝑖 , and 𝑡𝑖 𝑗 stands for
the timestamp of the 𝑗 th interaction with item 𝑖 .
Spreading (S): The spreading component favors items that occur
frequently in the current context. In agreement with how context
is defined within the ACT-R cognitive architecture, Reiter-Haas
et al. [40] define the context as the last item the user interacted
with. This component hence tends to favor items that the user
often interacted with in sessions that contain the most recent item
in the sequence. The corresponding activation is given by 𝑆𝑖 =
𝑃 (𝑖∈𝐶𝑘 )
𝑃 (𝑖 ) [10, 40], where item 𝑘 is the last item of the sequence, and

𝑃 (𝑖) and 𝑃 (𝑖 ∈ 𝐶𝑘 ) stand for the probabilities that track 𝑖 appears
in any session, and in a session containing item 𝑘 , respectively.
Partial Matching (PM): The PM component [40] aims at favoring
items that are similar to the context item 𝑘 , i.e., the last item the
user interacted with. The corresponding activation is given by
𝑃𝑖 = sim(𝑖, 𝑘), where sim(𝑖, 𝑘) represents the similarity between
item 𝑖 and the context item 𝑘 . Assuming an item 𝑖 to be represented
by a feature vector f𝑖 , the similarity sim(𝑖, 𝑘) between 𝑖 and 𝑘 is
defined as the scalar product of the corresponding feature vectors,
sim(𝑖, 𝑘) = f𝑖 · f𝑘 .
Valuation (V): The valuation component [15, 40] aims at measur-
ing the value attributed by a user to an item. The corresponding
activation for an item 𝑖 with which the user interacted 𝑛 times
is defined iteratively as 𝑉𝑖 (𝑛) = 𝑉𝑖 (𝑛 − 1) + 𝛼 (𝑅𝑖 (𝑛) −𝑉𝑖 (𝑛 − 1)),
where 𝑅𝑖 (𝑛) is the reward assigned to item 𝑖 for the 𝑛th interaction.
The starting valuation is set to 𝑉𝑖 (0) = 0 for all tracks, and the
learning rate 𝛼 is considered as a hyperparameter. In the context
of sequential music recommendation [40], the reward 𝑅𝑖 ( 𝑗) is typ-
ically either binary, i.e., 𝑅𝑖 ( 𝑗) = 1∀𝑗 ∈ [1, . . . , 𝑛], or given by the
duration of the 𝑗 th interaction with respect to the total track length.
Noise (N): The noise component models aspects of randomness
in the user’s behavior. The corresponding activation is given by
𝜖𝑖 = rng(), where rng() is a random number generator.

Reiter-Haas et al. [40] show that ACT-R-based approaches out-
perform baselines such as algorithms selecting the most recent
track, in terms of accuracy of predictions. Compared to their work,
we integrate ACT-R and CF, extend the analysis to beyond-accuracy
metrics, and provide a comparison with more recent baselines. Fi-
nally, we also leverage ACT-R for explaining the recommendations.

3 METHODS
To integrate ACT-R and CF for sequential music recommendation,
we propose the following hybrid algorithms.
Social ACT-R Kowald et al. [19] propose an algorithm for hashtag
recommendation that combines the ACT-R activations of the target
user’s past hashtags with the ACT-R activations of the target user’s
followees.
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We adapt this strategy to the music domain. In order to include
the listening behavior of other users, we first define the target
user’s “followees” as the set of 𝑘 users that are most similar to the
target user. The similarity simACT-R (𝑢, 𝑗) between the target user 𝑢
and another user 𝑗 is computed as cosine similarity between the
vector representing their listening events, i.e., their interactions
with tracks, reweighted with the ACT-R activations. The value of
the social component (SC) assigned to track 𝑖 for session 𝑢 is then
defined as a similarity-weighted average of the ACT-R activations
of the 𝑘 followees, 𝑆𝐶𝑖 =

∑
𝑗≤𝑘 ACT-R( 𝑗, 𝑖) · simACT-R (𝑢, 𝑗). The SC

and the target user’s ACT-R activation of the track are normalized
by applying softmax over all tracks and added up to obtain the final
recommendation score.
ACT-R + BPR This model extends ACT-R with a component that
favors tracks that have a similar interaction history to the one
of the context track, i.e., the last track the user listened to. For
this purpose, we pretrain a matrix factorization RS with Bayesian
personalized ranking (BPR) [43]. Each track is mapped to their BPR
embedding 𝑣𝑖 . We then compute the similarity simBPR (𝑖, 𝑗) between
two tracks 𝑖, 𝑗 as cosine similarity between their BPR embeddings
𝑣𝑖 , 𝑣 𝑗 . The recommendation score of a track 𝑖 is obtained by adding
up the softmax-normalized BPR similarity simBPR (𝑖, 𝑘) with the
context item 𝑘 and the softmax-normalized target user’s ACT-R
activation of 𝑖 . In addition, we consider a version of this model in
which only the similarity simBPR (𝑖, 𝑘) between the BPR embeddings
is considered when computing the recommendation score. This
model is referred to as Item BPR.
Weighted MultVAE: We integrate ACT-R with MultVAE [29], since
this model allows providing recommendations to users that are not
in the train set, and since it provides accurate recommendations in
several domains, including music [9, 36]. We pretrain and optimize
an instance of MultVAE. We then reweight the components of the
vector representing the listening events of the target user 𝑢 either
with the ACT-R activations or with the temporal reweighting factor
𝑤𝑖 (see Section 2.1), converting it to a vector of ratings. We feed
this vector to the pretrained MultVAE and perform a forward pass
of MultVAE to select the tracks to recommend.
Weighted UserkNN: Similar to Weighted MultVAE, we first train
an instance of MultVAE and then perform a forward pass on the
temporally reweighed vector representing the listening events of
the target user, extracting the latent representations 𝑙𝑢 of the target
user 𝑢 encoded by MultVAE. We encode the binarized1 profile of
the other users in the dataset and select the 𝑘 users with latent rep-
resentations having the largest cosine similarity simMultVAE (𝑢, 𝑗) to
the latent representation 𝑙𝑢 of the target user. We take the weighted
average of the binarized profiles of the 𝑘 nearest users, using the
similarity of the latent representations as weights for the weighted
average, as recommendation score. The score of track 𝑖 is therefore
given by

∑
𝑗≤𝑘 𝑟 ( 𝑗, 𝑖) · simMultVAE (𝑢, 𝑗), where 𝑟 ( 𝑗, 𝑖) represents the

binarized interaction of user 𝑗 with item 𝑖 .

1In agreement with the reweighing proposed by Ludewig et al. [34], we do not apply
temporal reweighing to the profile of the non-target users.

4 EXPERIMENTAL SETUP
In this section, we describe the setup for our experiments, i.e., the
baseline models, the evaluation metrics, the dataset, as well as the
training and hyperparameter selection.
4.1 Baselines and underlying models
We compare the performance of the approaches introduced in Sec-
tion 3 to those of two models effective in the task of sequential
recommendation – GRU4Rec [49] and temporal UserkNN [32, 33]
– and two models effective in predicting relistening behavior –
MostRecent [40] and ACT-R [40].
GRU4Rec: This algorithm makes use of recurrent neural networks
for sequential recommendation [49]. We take it as DNN-based
baseline since it is among the DNN approaches achieving high
accuracy, large dataset coverage, and low popularity bias, simulta-
neously [33].
Temporal UserkNN:Models including a temporal reweighting (see
Section 2.1) are competitive with DNN-based approaches in terms of
accuracy [33, 34]. In including this class of models as baselines, we
reweight the vectors representing the listening events of the target
user, as well as those representing the other users, as described in
Section 2.1. We then compute the cosine similarity of the resulting
vectors. The reweighted interactions of the 𝑘 nearest users are
averaged according to the similarity to the target user and used as
recommendation scores.
MostRecent: This algorithm recommends the most recent tracks
in the sequence, and has been proven effective in predicting users’
relistening behavior [40], especially in accurately predicting the
next track in the session (see discussion of Next-HR in Section 4.2).
ACT-R: This model corresponds to the one used by Reiter-Haas et
al. in [40] for modeling the users’ music relistening behavior; we
refer the reader to Section 2.3 for the description of the individual
components.2

4.2 Evaluation metrics
The performance of the algorithms is evaluated on the task of
rolling session completion. Similar to Reiter-Haas et al. [40], for
each target user we shift a sliding window of one week with a
hop size of one listening eventand define sessions as sequences of
listening events without gaps of more than 30 minutes between
consecutive tracks. Given a target user’s session of 𝑁 tracks and
the target user’s listening events of the previous seven days, we
assume a session segment of length 𝑙 < 𝑁 to be known and predict
the remaining 𝑁 − 𝑙 tracks in the session. For each session, we
consider all possible initial segment lengths, 𝑙 = 1, . . . , 𝑁 − 1.
Accuracy: We include two metrics for the accuracy of recommen-
dations. Since ACT-R can only recommend items that the user
already listened to, if the number of past interactions is less than
the number of tracks in the remainder of the sessions, i.e., those
to provide recommendations for, the algorithm will not be able
to provide recommendations for the full session. This results in
a higher precision and a lower recall. To mitigate this effect, we
2Similar to Reiter-Haas et al. [40], we normalize each component by applying softmax
over all tracks and add up the results to obtain the ACT-R activation of a track. For all
ACT-R-based models, preliminary experiments showed that including 𝜖 and PM based
on different versions of the features provided by Spotify reduces the performance of
the algorithms. We, therefore, omit them. Based on preliminary experiments, we also
set 𝑑 = 0.5.
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combine the precision and recall of recommendations into the F1
score. Similar to Reiter-Haas et al. [40], we also evaluate the next hit
rate (Next-HR), i.e., the ability of the algorithm to correctly predict
the next track of the session.
Novelty: The novelty of recommendations is measured as the frac-
tion of recommended tracks that have not been listened to by the
target user. In addition, to evaluate the quality of novel recommen-
dations, we also report the precision of novel recommendations,
P-Novelty.
Diversity: The diversity of the recommendations is measured with
respect to the genres.3 Since a higher diversity should indicate
that the recommended tracks belong to different genres, we define
diversity as the Shannon entropy of the distribution of genres over
the recommended tracks.
Popularity bias: To evaluate the tendency of the algorithms to
overrepresent popular tracks compared to the ones in the user’s
past listening events, we compute the Jensen-Shannon divergence
between the popularity distribution of tracks in the user’s past
listening events, and over the recommended tracks [23]. A high
popularity bias thus indicates that recommended tracks are more
popular than those already listened to by the target user. 4

4.3 Dataset, training, and evaluation
Similar to Melchiorre et al. [35], we conduct our experiments on the
extract of the large LFM-2b dataset [45]5 corresponding to the last
month (20/02/2020 - 19/03/2020) and remove users that listened to
more tracks than the 99th percentile of all users. We apply 10-core
filtering to users and items and split each user’s listening events
temporally in a 60% train, 20% validation, and a 20% test set. The
resulting dataset consists of 2 889 028 listening events, 12 679 users
and 101 837 items. The 60% train set is used to determine the similar-
ity for approaches relying on kNN, and for training and selecting the
best hyperparameters of GRU4Rec, BPR, and MultVAE. For GRU4Rec,
the most recent 20% interactions of each user in the 60% train set
are used for selecting the best hyperparameter configuration on a
grid space based on that reported by Ludewig et al. [33, 34]. The
optimization of the BPR and MultVAE instances required by ACT-R
+ BPR, Weighted MultVAE, and Weighted MultVAE-UserkNN is per-
formed previously to the optimization of the algorithms that rely
on them, and therefore on a separate set: the 60% train set is con-
verted to a binarized version (i.e., 𝑏𝑢𝑖 = 1 ⇐⇒ 𝑢 listened to 𝑖

at least once) and 20% randomly selected binarized interactions of
each user are used for selecting thehyperparameter configuration
achieving the highest NDCG@10 on a grid space based on that
reported by Melchiorre et al. [36]. The 20% validation set is used to
select the best configuration of kNN-, temporal, and ACT-R-based
algorithms described in Sections 3 and 4.1, on a grid space based on
that reported by Ludewig et al. [33, 34] and Reiter-Haas et al. [40],

3The track genre is assigned based on the Last.fm tags of the track, selecting the
genre with the highest tag weight. We use the list of Discogs genres, available at
https://mtg.github.io/acousticbrainz-genre-dataset/data_stats/ as possible genres of a
track.
4The popularity of a track is defined as the ratio of the total number of listening
events it accounts for [3, 24]. The distributions are computed over popularity classes,
each defined in terms of percentiles: after sorting tracks according to the number of
listening events, popular-, mid-, and niche-tracks account for 20, 60, and 20% of all
events, respectively.
5http://www.cp.jku.at/datasets/LFM-2b/

selecting the configuration achieving the highest F1 score. Since the
average number of session completion tasks per user is 67, providing
recommendations for the sessions of all 12 679 users would result
in roughly 850 000 session recommendations, i.e., roughly 850 000
test users in a standard recommendation scenario. Therefore, to
reduce computational costs, we randomly sample 100 users and
evaluate the algorithms’ performances reported in Section 5 on the
corresponding test sessions, for a total of 6 697 session completion
tasks.6

5 PERFORMANCE COMPARISON
Table 1 reports the performance of the algorithms in terms of ac-
curacy, novelty, diversity, and popularity bias on the 6 697 test
session completions of the 100 randomly sampled users. In terms
of accuracy (F1 and Next-HR), GRU4Rec outperforms the proposed
algorithms, as well as the other baselines. In terms of F1, GRU4Rec
is followed by Temporal UserkNN; this confirms the results from
previous work [14, 33], showing that these two algorithms are com-
petitive in the task of sequential recommendation. Interestingly,
however, when looking at Next-HR the performance of Temporal
UserkNN displays a substantial drop, and is clearly outperformed by
MostRecent. This confirms the results reported by Reiter-Haas et
al. [40], indicating that recommending the last track of the session is
a strong baseline with respect to Next-HR. The fact that approaches
based on recurrent neural networks achieve high accuracy of recom-
mendation, and that simply recommending the last track achieves
a high Next-HR, indicate that listening sessions tend to display re-
curring temporal patterns (in the extreme case, repetitions of single
tracks). With respect to P-Novelty, two of our proposed algorithms
achieve the best performances: ACT-R + BPR and Social ACT-R.
Social ACT-R achieves the highest values of diversity, indicating
that it is able to recommend tracks of various genres for completing
a session. It is interesting to observe that both diversity and accu-
racy of Social ACT-R recommendations are higher compared to
ACT-R: The inclusion of collaborative information in Social ACT-R
hence increases diversity and F1 simultaneously. Finally, we observe
that simple temporal- or memory-based approaches, i.e., MostRe-
cent and ACT-R, are less biased towards popular tracks. This pattern
could be explained by the fact that, since they only consider the
listening events of the target user, they do not rely on collaborative
data, which is a common source of popularity bias [2, 3, 24, 37].

In summary, we observe that the proposed algorithms – although
not outperforming the accuracy of DNN-based algorithms – achieve
the highest performance in terms of beyond-accuracy metrics, such
as novelty and diversity, are able to provide more accurate novel
recommendations (P-Novelty), and outperform pure ACT-R models
in terms of accuracy and beyond-accuracy metrics.

6 EXPLAINABLE MUSIC RECOMMENDATION
Since the proposed algorithms are based on a well-defined psycho-
logical model, their recommendations are intrinsically explainable.
This is advantageous for different RS stakeholders, as we discuss in
this section.
6For reproducibility purposes, we share the code, dataset, details on the dataset han-
dling and splits, hyperparameter optimization, and pretrained instances of BPR and
MultVAE required by the algorithms described in Section 3 at https://github.com/hcai-
mms/actr.

https://mtg.github.io/acousticbrainz-genre-dataset/data_stats/
http://www.cp.jku.at/datasets/LFM-2b/
https://github.com/hcai-mms/actr
https://github.com/hcai-mms/actr
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Table 1: Performance of the models in the session-completion task. Models are sorted in order of descending F1 score. All values
are averaged over the 6 697 test session completions of the 100 randomly sampled users, as described in Section 4.3 New models
are highlighted in blue . Best performances are highlighted in bold, second best are underlined.

F1 Next-HR Novelty P-Novelty Diversity PopBias

GRU4Rec 0.142 0.198 0.716 0.126 0.929 0.099
Temporal UserkNN 0.122 0.024 0.631 0.146 0.786 0.122
Item BPR 0.114 0.051 0.846 0.130 0.658 0.151
Weighted MultVAE 0.111 0.045 0.554 0.136 0.941 0.194
ACT-R + BPR 0.104 0.037 0.056 0.239 0.923 0.065
Social ACT-R 0.101 0.037 0.056 0.155 0.945 0.066
MostRecent 0.094 0.069 0.000 0.000 0.891 0.060
ACT-R 0.093 0.037 0.000 0.000 0.889 0.060
Weighted MultVAE UserkNN 0.064 0.010 0.831 0.064 0.833 0.176

Figure 1a shows an example of an initial segment of length 𝑙 = 6,
of a session of total length 𝑁 = 12. The initial segment consists of
five unique tracks, one of them listened to twice. Figure 1b shows
the list of 𝑁 − 𝑙 = 6 tracks with the highest recommendation score
according to Social ACT-R. The columns show the relative con-
tribution of the components of Social ACT-R, also reflected as
a color gradient. Each component captures a different aspect of
relevance for Social ACT-R’s recommendations, and can therefore
be translated in a way that can easily be understood by the end
user. Current obsession corresponds to BLL, which captures the re-
cency (Current) and frequency (obsession) of interactions with the
track. Current vibes corresponds to S since this component favors
tracks that often occurred together with the last one. Evergreens
corresponds to V which, with a binary reward, favors tracks that
were often listened to by the target user, irrespective of when in the
past. Finally, From similar listeners corresponds to SC, which reflects
collaborative information. Figure 1 hence gives a clear indication of
why each song was recommended to the user. The top-5 recommen-
dations all belong to the target user’s current session. The 6th is a
track that the target user never listened to, as it is evident from the
vanishing ACT-R components. In this particular case, the ACT-R
scores all vanish for other elements of the catalog, indicating that
in the one-week window used to evaluate the ACT-R scores, only
the current session is present. Therefore, in this example ACT-R
alone would not allow recommending more than five tracks, while
this can be achieved with Social ACT-R. For instance, the track at
the top of the recommendation list (From the Past comes the Storms)
appeared in the target user’s past interactions recently (BLL), often
(V and BLL), and in sessions that included the most recent track
the user listened to (S). For the last track in the list, the situation is
different: this track is not part of the target user’s past interactions;
therefore it was recommended since users with a similar listening
profile (according to the ACT-R activations) also listened to it. The
possibility to investigate the contributions of the different compo-
nents to the final recommendation score may also provide useful
information to the platform providers. In the example provided in
Figure 1, for instance, we see that the ACT-R components entirely
contribute to the recommendation scores at the top of the list, while
SC only becomes relevant once all the tracks of the initial segment
of the current session have been recommended. We attribute this to

the fact that the ACT-R activations are nonvanishing for a limited
set of tracks (all tracks the target user listened to in the last seven
days), while SC does not vanish for a larger set of tracks (all tracks
listened to by the 𝑘 most similar users). Aggregating the individual
ACT-R activations and SC as described in Section 3 hence results in
a very peaked individual ACT-R distribution over items, and a more
spread and almost negligible SC. Therefore, if a platform provider
wants to favor the CF component, for instance for providing more
novel recommendations, they might consider rank-based aggrega-
tion techniques, or consider assigning a higher weight to SC. The
explainability of RSs that integrate ACT-R with CF can also be used
to discover patterns in recommendations, which can be useful both
to platform providers and content producers. To give an example,
we analyze how often each of the Social ACT-R components is
the salient one, i.e., how often the score of this component is larger
than the score of the other components. Figure 2 shows the salience
of each component, in percentage over all recommendations, and
for specific genres. By looking at the salience over all genres, we see
that taken together, the ACT-R components are salient for about
90% of all recommendations, with S being the dominant component
for more than half of them. Hence, context, i.e., the last track the
user listened to, often plays the largest role in selecting which track
to recommend. This tendency can change when looking at specific
genres. For instance, while for tracks of the genre non-music – often
corresponding to spoken words – the salience of S is even increased,
the situation is inverted for stage and screen – e.g., tracks that are
part of movie soundtracks. For stage and screen, BLL is often the
salient component, and together with V is the salient component in
above 75% of recommendations. This indicates that for recommen-
dations of non-music tracks, the last track listened to is particularly
relevant, while for stage and screen frequency of occurrence in the
past listening events is more important. This information can be
further leveraged by the platform providers to weight the relative
importance of each component in a genre-specific way, in order to
design ACT-R- and content-based RSs, whose recommendations are
tailored to genres. Finally, investigating the components’ salience
may help content producers to gain insight into the behavior of
listeners of specific genres. For instance, reggae artists might ob-
serve that for this genre V is often the most salient contribution
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Session Listened

Position Track

1 The Abyss

2 R.I.P. (Rest in Pain)

3 From the Past Comes the Storms

4 From the Past Comes the Storms

5 To the Wall

6 Escape the Void

(a) Initial segment of length 𝑙 = 6.

Recommended Track Current obsession (BLL) Current vibes (S) Evergreens (V) From similar listeners (SC)

From the Past Comes the Storms 0.471 0.248 0.281 0.000

Escape to the Void 0.306 0.353 0.341 0.000

To the Wall 0.294 0.359 0.347 0.000

R.I.P. (Rest in Pain) 0.264 0.374 0.362 0.000

The Abyss 0.263 0.375 0.362 0.000

Troops of Doom 0.000 0.000 0.000 1.000

(b) Recommendations for the remaining 𝑁 − 𝑙 = 6 tracks in the session.

Figure 1: Left: Example of initial segment of length 6 of a target session of total length 12. The column “Session Position”
displays the position of the track in the initial segment of the target session. Right: Heatmap of the relative contribution of
the used Social ACT-R components to the total recommendation score of each of the 6 recommendations (remaining session
length). The more intense the color, the higher the contribution.

From similar users (SC)Evergreens (V)Current vibes (S)Current obsession (BLL)

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

rock

electronic

folk, world, and country

pop

funk / soul

hip hop

jazz

reggae

classical

latin

stage and screen

non-music

no genre available

all genres

Figure 2: Component salience over all Social ACT-R recommendations and over Social ACT-R recommendations of a specific
genre. A component is considered salient if its score is higher than the scores of the other components of the same track.
Investigating the components’ salience may help content producers to understand their listeners’ behaviour.

and conclude that their fans have a higher tendency to relisten to
the same tracks, irrespective of the last track they listened to.

7 CONCLUSION AND FUTUREWORK
In this work, we proposed four new RS algorithms that integrate
the ACT-R cognitive architecture with CF for sequential music rec-
ommendation: Social ACT-R, ACT-R + BPR, Weighted MultVAE,
and Weighted MultVAE UserkNN. We showed that although the pro-
posed algorithms do not outperform the accuracy of DNN-based
recommenders, they achieve the highest performance in terms of
beyond-accuracy metrics. In particular, integrating CF with ACT-R
in Social ACT-R achieves the highest diversity and simultaneously
increases F1 with respect to ACT-R. More importantly, the proposed
algorithms can be used for providing explainable recommendations,
which can enhance the users’ engagement with the platform, pro-
vide insight to platform providers on the RSs, and to artists on
the listening behaviors of their listeners. One of the limitations
of this work is that it exclusively considers one perspective from
cognitive psychology, i.e., that of the ACT-R model. Additionally,
the definition of context for the spreading and partial matching
components is given in terms of the last item of the session. While
this agrees with the way context is defined in the ACT-R cognitive

architecture, it would be interesting to extend the work with defini-
tions of context that are more common in the RS community, such
as location or time of the day. Moreover, we optimized the RSs for
achieving the highest F1 score. Due to the structure of the proposed
algorithms, including beyond-accuracy metrics in the optimization
process would allow analyzing how each component impacts the
different aspects of recommendation. This could be translated to
more detailed explanations and be leveraged for the design of a
hybrid RS that can be tuned by each user according to their needs.
We leave these extensions of our work for future research. Finally,
the explainability of the algorithms proposed in this work opens up
the possibility to evaluate the quality, user acceptance and under-
stanability of the explanations by means of user studies; we leave
this evaluation for future work.
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